Ответы на вопрос:
Периметр круга, также называемый длиной окружности, представляет собой число, получаемое в результате умножения его радиуса на два Пи, либо путем перемножения между собой его диаметра и числа Пи. Формула, используемая для расчета периметра круга, представлена в следующем виде:
L = d*π = 2*r*π.
Расшифровка обозначений:
d — диаметр круга,
r — его радиус,
π — это величина, которая является константой, выражающей отношение длины окружности к ее диаметру. Ее значение постоянно равно 3,14.
Каким производится вычисление периметра круга?
Под определением «расчет периметра круга» подразумевается процедура, направленная на установление длины окружности, ограничивающей его. В случае, когда длина радиуса круга является известной величиной, длина окружности может быть вычислена с применением приведенной ниже формулы:
l=2*π*r,
в ней радиус круга обозначен как r.
Под радиусом окружности подразумевается отрезок, который соединяет центр окружности с любой из множества точек, находящихся на ней.
Значение длины окружности также может быть вычислено, если диаметр круга известен. С этой целью нужно произвести умножение ее диаметра (d) на число Пи (π). В этом случае следует пользоваться формулой:
l=πd.
Если раскрывать такое понятие, как «диаметр окружности», то стоит отметить, что им является отрезок, проходящий через ее центр и соединяющий две любые точки этой окружности.
Число Пи (π) является математической постоянной, рассчитываемой как отношение длины окружности к величине ее диаметра. Оно равно 3,14.
Вот подробно можно ❤️
L = d*π = 2*r*π.
Расшифровка обозначений:
d — диаметр круга,
r — его радиус,
π — это величина, которая является константой, выражающей отношение длины окружности к ее диаметру. Ее значение постоянно равно 3,14.
Каким производится вычисление периметра круга?
Под определением «расчет периметра круга» подразумевается процедура, направленная на установление длины окружности, ограничивающей его. В случае, когда длина радиуса круга является известной величиной, длина окружности может быть вычислена с применением приведенной ниже формулы:
l=2*π*r,
в ней радиус круга обозначен как r.
Под радиусом окружности подразумевается отрезок, который соединяет центр окружности с любой из множества точек, находящихся на ней.
Значение длины окружности также может быть вычислено, если диаметр круга известен. С этой целью нужно произвести умножение ее диаметра (d) на число Пи (π). В этом случае следует пользоваться формулой:
l=πd.
Если раскрывать такое понятие, как «диаметр окружности», то стоит отметить, что им является отрезок, проходящий через ее центр и соединяющий две любые точки этой окружности.
Число Пи (π) является математической постоянной, рассчитываемой как отношение длины окружности к величине ее диаметра. Оно равно 3,14.
Вот подробно можно ❤️
1) 6-4=2 часа
2) 1400: 2=700 км в час - скорость каждого
3) 700*4=2800 км - пролете 1-й
4) 700*6=4200 км - пролетел 2-й
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
B888817.08.2020 00:25
-
soung120.02.2023 06:35
-
Суеверие22.07.2020 01:29
-
zhekabigboss08.01.2020 13:10
-
ДимаСуровенков22.12.2021 02:42
-
tatyana10103512.01.2021 18:31
-
kate80728.07.2022 16:11
-
zaobogdan11.09.2020 15:38
-
tafefuyozo05.04.2023 01:51
-
миру318.06.2022 09:58
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.