Три натуральних числа, сума яких дорівнює 147, є послідовними членами геометричної прогресії з цілим знаменником. Скільки може бути таких трійок чисел?
Ответы на вопрос:
Всего 8 различных таких троек.
Пошаговое объяснение:
Итак, известно: 3 числа такие, что:
Найти: число возможных вариантов
Решение: т.к. все 3 числа - члены геом. прогрессии, запишем так:
Теперь преобразуем полученное равенство:
Сделаем замену:
Получили произведение 2 множителей, про которые известно, что а1 - натуральное, k - целое..
т.к. а1 - натуральное, 147 - натуральное =>
=> и значение t тоже должно быть натуральным числом.
И, очевидно, значение а1 и t ограничено сочетаниями множителей, на которые можно разложить 147.
Разложим:
147 = 1•3•7•7
Итак, как а, так и t могут принимать значения из множества: {1; 3; 7; 21; 49; 147}
Рассмотрим t. обратная замена;
График t(k)= k²+k+1 - парабола, с вершиной в точке , ветви вверх.
При значениях t = 49; t = 147 k - не является целым числом, так что они для t не подойдут
Итак: Всего возможно 8 различных значений для k
И для каждого варианта k существует единственный вариант значения а1.
То есть - следовательно, всего различных наборов чисел может быть столько же, сколько различных значений k.
Т. е. всего 8 вариантов различных троек чисел
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
GalaxyTuna21.07.2022 07:13
-
lololololololololo1128.01.2020 13:34
-
ruuuuuyslan22.06.2021 04:11
-
sadasaдаа09.07.2021 20:27
-
vladimir0004110.05.2023 06:47
-
Anastasia622611.03.2021 10:07
-
Kerizok09.03.2022 13:15
-
Гошыш24.02.2020 14:40
-
Vika22334407.04.2020 18:09
-
Жеккаа72720.04.2020 06:59
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.