Есть ответ 👍

Маша выписывает по порядку на доску натуральные трехзначные числа. Оказалось, что выписанные Дашей числа (их не меньше трех) образуют конечную геометрическую прогрессию, а первое число равно 128.

а) Могла ли Даша выписать на доске число 686?
Б) Могла ли Даша выписать на доске число 496?
в) Какое наибольшее число могла выписать на доске Даша?

158
161
Посмотреть ответы 2

Ответы на вопрос:

korolovk
4,6(35 оценок)

а) да; б) нет; в) 972

Пошаговое объяснение:

а) Пусть геометрическая прогрессия имеет знаменатель q=\dfrac{7}{4}. Тогда получим последовательность b_1=128,b_2=128\cdot\dfrac{7}{4}=224,b_3=128\cdot\left(\dfrac{7}{4}\right)^2=392,b_4=128\cdot\left(\dfrac{7}{4}\right)^3=686. Число 686 может быть записано на доске.

б) Заметим, что знаменатель прогрессии q не может быть иррациональным числом: в противном случае второй член прогрессии b₂ = 128q — иррациональное число, что противоречит условию. Значит, q — рациональное число.

Предположим, что 496 является n-ным членом последовательности. Тогда b_n=496=128q^n\Leftrightarrow q^n=\dfrac{496}{128}=\dfrac{31}{8}. Поскольку 31 — простое число, оно не является степенью какого-либо другого числа. Значит, n = 1, q=\dfrac{31}{8}. Тогда получаем геометрическую прогрессию b_1=128,b_2=128\cdot\dfrac{31}{8}=496,b_3=128\cdot\left(\dfrac{31}{8}\right)^2=1922999 — третий член последовательности не трёхзначный, что противоречит условию. Значит, прогрессии с членом 496 не существует.

в) Пусть A — наибольший возможный член геометрической прогрессии, по условию A < 1000. Тогда b_n=A=128q^n\Leftrightarrow q^n=\dfrac{A}{128}\Leftrightarrow q^n=\dfrac{A}{2^7}. Число \dfrac{A}{2^7} является степенью некоторого рационального числа, значит, A=2^k\cdot a^{7-k}, где k — некоторое целое число из промежутка [0, 7], a — положительное нечётное число. Число представимо в таком виде, поскольку на 2^k можно сократить, в знаменателе останется 2^{7-k}, далее дробь несократима и является степенью n = 7 - k числа q: \dfrac{A}{2^7}=\dfrac{2^k\cdot a^{7-k}}{2^7}=\dfrac{a^{7-k}}{2^{7-k}}=\left(\dfrac{a}{2}\right)^{7-k}. Значит, 2^k\cdot a^{7-k}.

Переберём все k от 0 до 7:

k = 0: a^7. 2^7=128,3^7=2187\Rightarrow a\leq 2\Rightarrow a\leq 1\Rightarrow A\leq 1k = 1: 2a^6. 2^6=64, 3^6=729\Rightarrow a\leq 2\Rightarrow a\leq 1\Rightarrow A\leq 2k = 2: 4a^5. 3^5=243,4^5=1024\Rightarrow a\leq 3\Rightarrow A\leq 972k = 3: 8a^4. 3^4=81,4^4=256\Rightarrow a\leq 3\Rightarrow A\leq 648k = 4: 16a^3. 3^3=27, 4^3=64\Rightarrow a\leq 3\Rightarrow A\leq 432k = 5: 32a^2. 5^2=25,6^2=36\Rightarrow a\leq 5\Rightarrow A\leq 800k = 6: 64ak = 7: 128 — верно, A = 128.

Наибольшее значение A = 972. Покажем, что оно достигается. Пусть q=\dfrac{3}{2}. Тогда b_1=128,b_2=128\cdot\dfrac{3}{2}=192,b_3=128\cdot\left(\dfrac{3}{2}\right)^2=288,b_4=128\cdot\left(\dfrac{3}{2}\right)^3=432,\\b_5=128\cdot\left(\dfrac{3}{2}\right)^4=648,b_6=128\cdot\left(\dfrac{3}{2}\right)^5=972

Таким образом, наибольшее число, которое могла выписать Даша — 972.


15•80=1200 метров до школы 1200: 60=20 минут он шел обратно

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS