Найти общее и частное решение дифференциального уравнения второго порядка: y′′ − 4y′ + 4 = 0 (0) = 1; '(0) = 3
Ответы на вопрос:
y′′ − 4y′ + 4 = 0
Решим характеристическое уравнение
к²-4к=0;
к*(к-4)=0
к₁=0; к₁=4;
общее решение соответствующего однородного уравнения имеет вид
уобщ. =с₁*е^(0*x)+c₂e^(4х), или уобщ.=с₁+c₂e^(4х)
т.к. y′′ − 4y′=- 4 , то частное решение ищем по правой части, которая представляет из себя многочлен нулевой степени, учитав, что 0-однократный корень характеристического уравнения. значит.
уч.=Ах,
у'=А,
у''=0
для определения А , подставим уч.=Ах, у'=А, у''=0 в исходное уравнение,
-4А=-4, значит, А=1, уч.=х,
зная, что общее решение неоднородного уравнения равно сумме общего решения однородного и частного решения неоднородного,
получим Y=уо.o+yо.н., подставим найденные уо.o и yо.н в это равенство, получим Y=с₁+c₂e^(4х)+х- общее решение неоднородного дифференциального уравнения
найдем первую производную
Y'=(с₁+c₂e^(4х)+х)'=4c₂e^(4х)+1
для нахождения с ₁ и с₂ в задаче Коши подставим начальные условия.
Получим
с₁+c₂e^(4*0)+0=1⇒с₁+c₂=1
4c₂e^(4*0)+1=3⇒c₂=2/4=0.5
зная c₂, найдем с₁=1-c₂=1-0.5=0.5
Значит, частное решение, удовлетворяющее начальным условиям, будет Y=0.5+0.5e^(4х)+х
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
Avmb13.09.2021 03:43
-
BULATIKSPB17.06.2021 02:15
-
Starbiliya200321.10.2022 21:26
-
murzyatyan05.05.2023 20:58
-
Allison502.06.2022 23:46
-
Kros228volk22523.02.2020 15:47
-
MilkaV22.12.2020 13:41
-
tumanovamariam08.04.2023 08:07
-
AZAZA200817.10.2021 12:23
-
vfedkina3503.01.2023 12:25
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.