Masika08
01.08.2021 22:02
Алгебра
Есть ответ 👍

постройте в одной координатной плоскости графики функций y=-1/4x³, ТОЛЬКО ТАБЛИЦА КАК В ОБРАЗЦЕ, ГРАФИК НЕ НУЖЕН.

250
366
Посмотреть ответы 1

Ответы на вопрос:

Dav134
4,4(81 оценок)

Биквадратное уравнение.

Решается заменой переменной:

x^2=t

t^2+(3a+1)t+0,25=0

D=(3a+1)^2-4\cdot 0,25=9a^2+6a+1-1=9a^2+6a

Если  D >0,   т.е.

9a^2+6a0\\\\3a(3a+2) 0

a\in (-\infty; -\frac{2}{3})U(0;+\infty)

уравнение имеет корни:

t_{1}=\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}     или   t_{2}=\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}

Обратный переход:

x^2=\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}      или     x^2=\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}

Уравнение x^2=с  имеет корни, если c> 0, тогда корни противоположны по знаку

Чтобы корни данного уравнения были равны,

с=0

\frac{-(3a+1)-\sqrt{9a^2+6a} }{2}=0

\sqrt{ 9a^2+6a}=-(3a+1)

Это иррациональное уравнение.

При (3a+1) >0 оно не имеет корней.

При (3а+1) ≤0

возводим обе части уравнения в квадрат:

9a^2+6a=9a^2+6a+1

0=1 - неверно, нет таких значений а

Аналогично

\frac{-(3a+1)+\sqrt{9a^2+6a} }{2}=0

\sqrt{ 9a^2+6a}=(3a+1)

При (3a+1) < 0 оно не имеет корней.

При (3а+1) ≥0

возводим обе части уравнения в квадрат:

9a^2+6a=9a^2+6a+1

0=1 - неверно, нет таких значений а

Если   D=0, т.е   9a^2+6a=0

a=0    или      a=-\frac{2}{3}

При  a=0  

уравнение принимает вид:

x^4+x^2+0,25=0

D=1^2-4\cdot 0,25=0    ⇒  x^2=-1

уравнение не имеет корней

При  a=-\frac{2}{3}  

уравнение принимает вид:

x^4-x^2+0,25=0

D=1-4\cdot 0,25=0     ⇒     x^2=\frac{1}{2}

x=\pm\frac{\sqrt{2} }{2}

Уравнение 4-ой степени, значит

x_{1,2}=-\frac{\sqrt{2} }{2}   и   x_{3,4}=\frac{\sqrt{2} }{2}

О т в е т. При a=-\frac{2}{3}

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS