В равнобедренном треугольнике проведены биссектрисы углов, прилежащих к основанию. Определи длину биссектрисы угла ∡A, если длина биссектрисы угла ∡C равна 13 см. Pazime21_uzd.png
.
Рассмотрим треугольники ΔDAC и Δ
.
(Все углы и стороны нужно записывать большими латинскими буквами.)
1. Углы, прилежащие к основанию равнобедренного треугольника,
. Так как данный треугольник равнобедренный, то ∡B
= ∡BCA.
2. Так как проведены биссектрисы этих углов, справедливо, что ∡
=∡DAC=∡DCE= ∡
.
3. У рассматриваемых треугольников общая сторона
.
Значит, треугольники равны по второму признаку равенства треугольников.
У равных треугольников равны все соответствующие элементы, в том числе стороны
=
.
Длина искомой биссектрисы
см.
190
433
Ответы на вопрос:
ΔАВС , АВ=ВС , ∠АСВ=75° , точка Х∈ВС , т. Y∈ВС , т. Х∈ВY ,
АХ=ВХ=2 см , ∠ВАХ=∠YАХ . Найти AY .
Так как ΔАВС - равнобедренный и АВ=ВС, то ∠ВАС=∠АСВ=75° ⇒
∠АВС=180°°-75°-75=30°
Так как АХ=ВХ=2 см , то ΔАВХ - равнобедренный и ∠ВАХ=∠АВХ , но ∠АВХ=∠АВС=30° , поэтому ∠ВАХ=30° и ∠АХВ=180°-30°-30°=120° .
Тогда внешний угол ∠AXY=180°-120°=60° .
По условию ∠YAX=∠ВАХ=30° . Тогда в ΔAXY угол ∠AYX=180°-30°-60°=90° , то есть ΔAXY - прямоугольный , в котором гипотенуза АХ=2 см , а катет XY , лежащий против угла в 30°, равен половине гипотенузы, то есть XY=1 cм .
По теореме Пифагора AY²+XY²=AX² ⇒ AY²=AX²-XY²=2²-1²=4-1=3 ,
AY=√3 cм .
Объяснение:
Отметь как лучший
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
marinandnatasha120.10.2022 13:53
-
маоия05120914.12.2021 21:16
-
Плаоцтвтч11.04.2020 05:51
-
Ilay6408.12.2021 19:57
-
ЕваЛюцифер06.02.2021 12:58
-
коу00713.11.2022 08:51
-
Капач25.06.2023 12:35
-
KalipsoMirai21.03.2021 16:01
-
sonyavolkova2627.08.2022 13:11
-
aika19411.05.2020 00:52
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.