Ответы на вопрос:
Рассмотрим одну из них — поиск синуса 18 градусов. Заметим, что традиционные методы преобразований исходного выражения Sin 18^\circ по формулам двойных, тройных углов, суммы и произведения функций здесь не .
Начнем с последовательности очевидных равенств:
Sin 54^\circ=Sin \left ( \dfrac{\pi}{2}- 36^\circ \right )
Sin 54^\circ=Cos 36^\circ
(применили формулу приведения)
Sin 3 \cdot 18^\circ=Cos 2\cdot 18^\circ
3Sin18^\circ - 4Sin^3 18^\circ = 1- 2Sin^2 18^\circ(формула тройного и двойного углов)
Последнее равенство говорит о том, что Sin 18^\circ является корнем уравнения
3t-4t^3=1-2t^2
или после упрощения
4t^3-2t^2-3t+1=0
Очевидно, что x=1 является одним из его корней.
Следовательно по теореме Безу многочлен из левой части может быть разложен на множители, один из которых t-1 , а второй можно получит либо делением уголком, либо по схеме Горнера, либо непосредственными преобразованиями, выделяющими множитель t-1 . Они представлены ниже:
4t^2(t-1) + 2t^2-3t+1 =0
4t^2(t-1) + 2t(t-1) -t + 1 = 0
4t^2(t-1) + 2t(t-1) - (t -1) = 0
Выносим t-1 за скобку:
(t-1)(4t^2+ 2t -1) = 0
Приравнивая каждый множитель к нулю и решая полученное квадратное уравнение от второго множителя, получим три корня начального уравнения:
t_1=1; t_2 = \dfrac{-1-\sqrt{5}}{4};t_3 = \dfrac{-1+\sqrt{5}}{4}
Первые два корня не подходят, как как 18 градусов — угол первой четверти и поэтому Sin 18^\circ \in (0;1), а t_2 ~~ 0.30901
Начнем с последовательности очевидных равенств:
Sin 54^\circ=Sin \left ( \dfrac{\pi}{2}- 36^\circ \right )
Sin 54^\circ=Cos 36^\circ
(применили формулу приведения)
Sin 3 \cdot 18^\circ=Cos 2\cdot 18^\circ
3Sin18^\circ - 4Sin^3 18^\circ = 1- 2Sin^2 18^\circ(формула тройного и двойного углов)
Последнее равенство говорит о том, что Sin 18^\circ является корнем уравнения
3t-4t^3=1-2t^2
или после упрощения
4t^3-2t^2-3t+1=0
Очевидно, что x=1 является одним из его корней.
Следовательно по теореме Безу многочлен из левой части может быть разложен на множители, один из которых t-1 , а второй можно получит либо делением уголком, либо по схеме Горнера, либо непосредственными преобразованиями, выделяющими множитель t-1 . Они представлены ниже:
4t^2(t-1) + 2t^2-3t+1 =0
4t^2(t-1) + 2t(t-1) -t + 1 = 0
4t^2(t-1) + 2t(t-1) - (t -1) = 0
Выносим t-1 за скобку:
(t-1)(4t^2+ 2t -1) = 0
Приравнивая каждый множитель к нулю и решая полученное квадратное уравнение от второго множителя, получим три корня начального уравнения:
t_1=1; t_2 = \dfrac{-1-\sqrt{5}}{4};t_3 = \dfrac{-1+\sqrt{5}}{4}
Первые два корня не подходят, как как 18 градусов — угол первой четверти и поэтому Sin 18^\circ \in (0;1), а t_2 ~~ 0.30901
ответ:
пошаговое объяснение:
если до целого числа? !
3039 = 3040
8203 = 8200
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
axon11kot18.06.2022 06:41
-
YourKarma39611.06.2020 07:30
-
77777777008.04.2022 09:18
-
qofepvcqj09.05.2021 08:25
-
Grizman705.01.2020 03:03
-
ubfhbc24.03.2023 01:59
-
ТаСм05.11.2021 08:42
-
ПолинаЗнаетОтвет13.12.2022 07:38
-
vika2356201.04.2023 04:21
-
Мучений10.05.2022 15:52
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.