Есть ответ 👍

Задание 1.

Две стороны треугольника равны 10 см и 16 см, а угол между ними равен 60°. Определите:

а) длину третьей стороны треугольника ( );

б) приближённые градусные меры двух других углов ( ).

Для решения пункта (б) можно использовать таблицы Брадиса.

Задание 2 ( ).

В треугольнике ABC BC = 3 см, BA = 4 см, а его площадь равна 3√2 см². Найдите сторону AC, если известно, что угол B – тупой.

Задание 3.

В треугольнике ABC ∠A = α, ∠B = β, BC = a. Найдите:

а) длину стороны AB ( );

б) длину стороны AC ( );

в) площадь треугольника ABC ( ).

253
487
Посмотреть ответы 2

Ответы на вопрос:

brain0003
4,6(15 оценок)

ВС= 6 см; P=15 см; S=5√3 см²; R= 2√3 см.

Объяснение:

Пусть дан треугольник АВС, в котором АВ= 4 см, АС = 5 см , ∠А=60°.

Найдем сторону ВС по теореме косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

ВС²=АВ²+АС²-2·АВ·АС·sinA;

\begin{gathered}BC^{2} =4^{2} +5^{2} -2\cdot4\cdot 5\cdot cos60^{0} ;BC^{2} =16+25-2\cdot20\cdot \dfrac{1}{2} ;\\BC^{2} =16+25-5;\\BC^{2}=36;\\BC=6.\end{gathered}

BC

2

=4

2

+5

2

−2⋅4⋅5⋅cos60

0

;

BC

2

=16+25−2⋅20⋅

2

1

;

BC

2

=16+25−5;

BC

2

=36;

BC=6.

Тогда ВС= 6 см

Периметр треугольника - сумма длин всех сторон треугольника.

\begin{gathered}P=AB+AC+BC;\\P=4+5+6=15\end{gathered}

P=AB+AC+BC;

P=4+5+6=15

см.

Найдем площадь треугольника по формуле.

\begin{gathered}S=\dfrac{1}{2} \cdot AB\cdot AC\cdot sin60^{0} ;S=\dfrac{1}{2}\cdot 4\cdot 5\cdot \dfrac{\sqrt{3}}{2} =5\sqrt{3}\end{gathered}

S=

2

1

⋅AB⋅AC⋅sin60

0

;

S=

2

1

⋅4⋅5⋅

2

3

=5

3

см².

Радиус окружности, описанной около треугольника определим по формуле.

R=\dfrac{a}{2\cdot sin\alpha }R=

2⋅sinα

a

R=\dfrac{6}{2\cdot sin 60^{0} } =\dfrac{6}{2\cdot\dfrac{\sqrt{3} }{2} } =\dfrac{6}{\sqrt{3} } =\dfrac{6\sqrt{3} }{3} =2\sqrt{3} .R=

2⋅sin60

0

6

=

2⋅

2

3

6

=

3

6

=

3

6

3

=2

3

.

R=2√3 см.

ElisYesly
4,6(83 оценок)

Радиус перпендикулярен касательной в точке касания, а отрезки касательных АМ и ВМ равны по свойству касательных из одной точки. Следовательно, прямоугольные треугольники ОАМ и ОВМ равны по катету и общей гипотенузе. Тогда <AOM=<BOM=60°, а <АМО=<BMO=30° и МО=16см, так как ОА=ОВ=8см - катет против угла 30°.По Пифагору АМ=ВМ=√(16²-8²)=8√3см.

Треугольник АВМ равносторонний, так как угол при его вершине равен 60°.

Следовательно, его периметр равен 3*8√3=24√3см.

ответ: периметр равен 24√3 см.

Подробнее - на -

Объяснение:

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS