tdv84
31.05.2021 07:18
Геометрия
Есть ответ 👍

P=18см Стороны относятся как 1:2:3
Найдите длину всех сторон ​

219
440
Посмотреть ответы 3

Ответы на вопрос:


пусть стороны будут х , от сюда следует

Р= х + 2х + 3х

18 = 6х

х=3

а= 3

b = 3 × 2 = 6

c = 3 × 3 = 9

Eennoottt
4,8(35 оценок)

Р=(1+2+3)×2=12(см)

Вроде так


Есть такая формула для площади произвольного четырёхугольника с диагоналями d₁, d₂, угол между которыми φ: s = ½ d₁d₂ sin φ. в случае ромба (угол между диагоналями прямой) это даёт s = ½ d₁d₂ = ½·14·48 = 336. с другой стороны, s = ah, где a — сторона, h — высота ромба. сторону можно найти по теореме пифагора, рассмотрев треугольник-четвертинку ромба: a² = (14/2)² + (48/2)² = 49 + 576 = 625 = 25², a = 25. следовательно, 336 = s = 25h, откуда h = 13,44 (см) . в общем виде: s = ½ d₁d₂ = ah = ½√(d₁² + d₂²) · h, h = d₁d₂/√(d₁² + d₂²). с трапецией всё хуже. только через диагонали (не зная ещё какого-нибудь элемента) площадь выразить не получится. ========== добавление пусть abcd — трапеция (bc < da — основания) . проведём через вершину c прямую ce || bd до пересечения с прямой da. bced — параллелограмм. диагональ cd делит его на два треугольника одинаковой площади. поэтому s(abcd) = s(abd) + s(bcd) = s(abd) + s(cde) = s(acd) + s(cde) = s(ace). у треугольника ace стороны равны d₁ и d₂, высота h. ae = √(ac² − h²) + √(ce² − h²) = = √(d₁² − h²) + √(d₂² − h²). s(abcd) = s(ace) = ½ (√(d₁² − h²) + √(d₂² − h²)) h.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS