Есть ответ 👍

Знайдіть сторони АС трикутника АВС, якщо АВ=5 см, ВС=7см, кут В дорівнює 60°​

218
251
Посмотреть ответы 2

Ответы на вопрос:

sensed
4,4(16 оценок)

5см

beynyadima
4,4(67 оценок)

ответ:

пошаговое объяснение:

xy*dx+(1+y^2)*\sqrt{1+x^2}*dy=0|*\frac{1}{y\sqrt{1+x^2}}{xdx}{\sqrt{1+x^2}}=-\frac{(1+y^2)dy}{y} \frac{d(1+x^2)}{\sqrt{1+x^2}}=\int(-\frac{1}{y}-y){1+x^2}=-ln|y|-\frac{y^2}{2}+{1+x^2}+ln|y|+\frac{y^2}{2}={1+x^2}+ln|y|+\frac{y^2}{2})'=c'{x}{\sqrt{1+x^2}}+\frac{y'}{y}+yy'=0|*y\sqrt{1+x^2}dx\\xydx+(1+y^2)\sqrt{1+x^2}dy

в начале при делении потеряли ответ y=0, поэтому полный ответ:

(\sqrt{1+x^2}+ln|y|+\frac{y^2}{2}=c\ ; y=0

(1+x^2)*y'+y*\sqrt{1+x^2}=xy|*\frac{dx}{y(1+x^2)}{dy}{y}+\frac{dx}{\sqrt{1+x^2}}=\frac{xdx}{1+x^2}{dy}{y}=\frac{1}{2}\frac{d(1+x^2)}{1+x^2}-\frac{dx}{\sqrt{1+x^2}}{dy}{y}=\frac{1}{2}\int\frac{d(1+x^2)}{1+x^2}-\int\frac{dx}{\sqrt{1+x^2}}\\ln|y|=\frac{1}{2}ln|1+x^2|-ln|x+\sqrt{1+x^2}|+c\\ln|y|=ln|\sqrt{1+x^2}|-ln|x+\sqrt{1+x^2}|+ln|c|\\ln|y|=ln|\frac{c\sqrt{1+x^2}}{x+\sqrt{1+x^2}}|\\y=\frac{c\sqrt{1+x^2}}{x+\sqrt{1+x^2}}\\y*\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}=c

проверка:

(y*\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}})'=c'\\y'*\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}+y*{\frac{(1+\frac{x}{\sqrt{1+x^2}})*\sqrt{1+x^2}-\frac{x}{\sqrt{1+x^2}}*(x+\sqrt{1+x^2})}{1+x^2}}=0\\y'*\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}}+y*{\frac{(\frac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}})*\sqrt{1+x^2}-\frac{x}{\sqrt{1+x^2}}*(x+\sqrt{1+x^2})}{1+x^2}}=0|*\frac{\sqrt{1+x^2}}{x+\sqrt{1+x^2}}\\y'+y\frac{\sqrt{1+x^2}-x}{1+x^2}=0|*(1++x^2)y'+y\sqrt{1+x^2}-xy=+x^2)y'+y\sqrt{1+x^2}=xy

в этом примере мы тоже теряем решение y=0, но дописывать его не надо т.к. у=0 при с=0

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS