Найдите какую-нибудь пару натуральных чисел, которая являет- ся решением уравнения
Ответы на вопрос:
Найти по одному решению каждого уравнения - не проблема. А вот найти все натуральные решения - это намного более сложная задача.
Простейшие решения в первой задаче (1;1)), во второй (3;2), в третьей (1;1). Дальше можете не смотреть (а можете посмотреть).
1) Преобразуем так: (x²-1)(y²-1)=0; x²-1=0 или y²-1=0; x=1 или y=1.
То есть решения такие: (1;1), (1;2), (1;3), ..., (2;1), (3;1),...
2) Преобразуем так: x²-2y²=1. Это намного более сложная задача - частный случай так называемого уравнения Пелля. Заинтересуетесь - почитайте литературу на эту тему, только сначала попробуйте решить сами. Годится, как я уже писал, пара (3;2), остальные пары получаются из этой по такому правилу: если была пара (x;y), то следующая равна (3x+4y;2x+3y). Поэтому получаем второе решение (3·3+4·2;2·3+3·2)=(17;12). Можете построить сколько угодно решений по такому правилу.
3) Конечно, если m=n, то Поэтому мы уже имеем бесконечное множество решений. Но ими множество решений не исчерпывается. По крайней мере то есть получили решения (2;4) и (4;2). Докажем, что других решений нет. Преобразуем так:
Рассмотрим функцию (x≥1)
Слева от e производная положительна, справа отрицательна, то есть слева от e функция возрастает, справа убывает.
при этом все эти числа кроме f(1) больше 1. Поэтому кроме f(2)=f(4) все эти числа разные.
ответ в третьей задаче: (2;4), (4;2), (1;1), (2;2), (3;3),...
прощения, если не все было понятно - в будущем разберетесь))
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
Xb00014.02.2022 15:41
-
ЭМИР20072008200915.05.2020 01:39
-
zorlnaviitukp00zmd29.03.2023 04:54
-
Professor200407.04.2021 23:21
-
antonovakate200609.09.2020 15:09
-
Zahar447205.02.2020 13:32
-
dhdhhd5509.09.2021 20:21
-
lenalime03.03.2020 02:20
-
8905168200713.10.2022 17:47
-
NAZBEK27.03.2021 08:00
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.