Есть ответ 👍

Натуральные числа x,y,z таковы, что x²+y²=z². Докажите, что xyz делится на а)3, б)5, в)4

154
302
Посмотреть ответы 2

Ответы на вопрос:


Пошаговое объяснение:

1) Докажем, что квадрат натурального числа не может дать в остатке 2 при делении на 3

а≡0(mod 3)⇒a²≡0(mod 3)

а≡(±1)(mod 3)⇒a²≡(±1)²≡1(mod 3)

x²+y²-z²=0≡0(mod3) значит по крайней мере одно из чисел x, y, z должно делится на три. Из чего следует делимость на три числа xyz

2) Пусть xyz не  делится на 5. Тогда ни одно из чисел x, y, z не делится на 5

а≡0(mod 5)⇒a²≡0(mod 5)

а≡(±1)(mod 5)⇒a²≡(±1)²≡1(mod 5)

а≡(±2)(mod 5)⇒a²≡(±2)²≡4≡-1(mod 5)

Значит, если ни одно из чисел x, y, z не делится на 5, то должно выполнится равенство

x²+y²-z²≡±1±1±1≡0(mod 5)

А это не возможно.

3) Если среди чисел x, y, z по крайней мере два четных, или есть одно делящееся на 4 тогда xyz делится на 4. Пусть их будет не более одного и это чётное число не делится на 4.

То что в равенстве x²+y²=z² все три числа x, y, z не могут быть нечетными очевидно.

Остается рассмотреть случай того что среди чисел x, y, z одно четное не делящееся на 4

а) x, y- нечётные, z-чётное

x=2n+1, y=2k+1, z=2m

x²+y²=(2n+1)²+(2k+1)²=4(n²+n+k²+k)+2≡2(mod4)

z²=(2m)²=4m²≡0(mod4)

Равенство не возможно.

б) одно из чисел x, y не чётные, другое нечётное, z-нечётное

(2n+1)²+(2m)²=(2k+1)²,  m-не делится на 2

m²=k²+k-n²-n=(k-n)(k-n+1)

Но числа (k-n)  и  (k-n+1) разной чётности. Значит одно из них чётно.

Тогда и число m² чётно⇒m-чётное.

Получили противоречие.

Значит  делится на 4

Ч.т.д.


Пошаговое объяснение:

В 3

11 умножаешь на 11 и остальные также)) =³

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS