, решить задачу: Основанием пирамиды служит равнобедренный треугольник, основание которого а и угол при основании α. Вычислите боковую поверхность пирамиды, если двугранные углы при основании пирамиды равны β.
185
283
Ответы на вопрос:
Хорошая , заставляющая тряхнуть стариной и вспомнить некоторые трюки, полезные при работе с трапецией. трапеция abcd; ad - большее основание, внизу; bc - меньшее основание, наверху. перенесем диагональ bd на величину верхнего основания. другими словами, через точку с проводим прямую, параллельную bd, до пересечения с продолжением ad в точке e. получился равнобедренный треугольник ace с боковыми сторонами, равными диагоналям трапеции, то есть ac=ce=50; при этом основание треугольника равно сумме оснований трапеции, то есть удвоенной средней линии; ae=96. расстояние между основаниями трапеции равно высоте этого треугольника, найдем ее. поскольку высота cf равнобедренного треугольника ace, опущенная на его основание, является также медианой, можем найти cf из прямоугольного треугольника acf с теоремы пифагора: cf^2=ac^2-af^2=50^2-48^2=4(25^2-24^2)= 4(25-24)(25+24)=4·49=(14)^2⇒cf=14 замечание. многие наряду с самым известным прямоугольным треугольником с целыми сторонами (египетским: 3-4-5) знают и несколько других, одним из них является треугольник 7-24-25, стороны которого в 2 раза меньше сторон нашего. заметив это, можно было избежать применение теоремы пифагора (впрочем, не знаю, что сказала бы на этот счет ваша учительница)
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
няхамилаха04.05.2022 10:02
-
хани200531.05.2022 08:39
-
cehrjdfyflz160328.01.2020 21:27
-
nikkf2011121.05.2023 19:36
-
katea00117.11.2020 02:23
-
proxiv13.03.2022 08:42
-
linakirilinaa22.06.2023 02:00
-
дуда115.06.2021 09:51
-
serdecsofia29.01.2020 08:16
-
лулу3604.04.2020 01:28
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.