Ответы на вопрос:
Найдем корни многочлена g(x)=x^2+3x+2
x^2+3x+2=0
По теореме Виета :
x1= -2
x2= -1
x^2+3x+2=(x+1)*(x+2)
Предположим , что многочлен :
f(x) =(x+1)^(2n-1) -(x+2)^n +10
делится на x^2+3x+2 , тогда он должен иметь корни -2 и -1
Проверим :
f(-1) = 0^(2n-1) - (1)^n +10 = -1+10=9 - явно не то что нужно.
Вывод только один : там не 10 , а 1.
Докажем , что многочлен :
f(x) =(x+1)^(2n-1) -(x+2)^n +1
делится на x^2+3x+2
Найдем f(-1) :
f(-1) = 0^(2n-1) - (1)^n +1 = 0 -1+1=0
Вывод : x=-1 - корень данного многочлена , то есть f(x) делится на (x+1)
Найдем f(-2) :
f(-2) = (-1)^(2n-1) -0^n +1 = -1-0+1= 0
Примечание : (-1)^(2n-1) =-1 , поскольку натуральное число 2*n-1 является нечетным.
Вывод : x=-2 - корень данного многочлена , то есть f(x) делится на (x+2)
Таким образом f(x) делится на (x+1)*(x+2) =x^2+3x+2=g(x)
Что и требовалось доказать.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
настя606310.10.2020 06:08
-
Хрусть07.08.2020 11:24
-
karinakrasyuk23.03.2021 20:32
-
Bata200312.02.2020 04:21
-
felgovanp09wqq02.01.2022 18:17
-
maksimwwe0071828.06.2023 21:04
-
арсюха621.06.2021 19:15
-
топтип06.01.2020 03:01
-
Taddi27.12.2022 15:02
-
lap8592815.11.2022 07:48
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.