Надо исправить отценки в рбд треугольн авс медианы пересекаются в точке о. найдите расстояние от точки о до вершины в данного треуг ,если ав=ас=13см вс=10см
Ответы на вопрос:
Площа поверхні тіла обертання може бути знайдена за до формули:
S = 2π∫ab(x)dx,
де a - половина довжини основи рівнобедреного трикутника, яка дорівнює b/(2tan(β/2)).
Функція ab(x) описує довжину дуги, яку трикутник обертається, і може бути знайдена за до теореми Піфагора:
ab(x) = √(x^2 + b^2/4) + √(x^2 + b^2/4).
Тоді:
S = 2π∫ab(x)dx
= 2π∫0^a √(x^2 + b^2/4) + √(x^2 + b^2/4) dx
= 4π∫0^a √(x^2 + b^2/4) dx.
Здійснюємо підстановку x = (b/2)tan(t):
dx = (b/2)sec^2(t)dt,
x = 0 відповідає t = 0,
x = a відповідає t = atan(2a/b).
Тоді:
S = 4π∫0^atan(2a/b) √[b^2/4tan^2(t) + b^2/4] (b/2)sec^2(t) dt
= 2πb ∫0^atan(2a/b) [tan^2(t) + 1] sec(t) dt.
Зробимо ще одну підстановку: u = sec(t), du = sec(t)tan(t)dt.
Тоді:
S = 2πb ∫1^sec(atan(2a/b)) (u^2 - 1) du
= 2πb [u^3/3 - u]1^sec(atan(2a/b))
= 2πb [sec^3(atan(2a/b))/3 - sec(atan(2a/b))].
Враховуючи те, що sec(atan(x)) = √(x^2 + 1), отримуємо:
S = 2πb [(2a/b)^3/3 + 2a/b - 2√(a^2 + b^2/4)].
Отже, площа поверхні тіла обертання рівнобедреного трикутника дорівнює 2πb [(2a/b)^3/3 + 2a/b - 2√(a^2 + b^2/4)].
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
nadyalewoxtphe07.05.2021 04:37
-
Pusya10203.09.2022 00:28
-
alinka39301.07.2020 04:38
-
аружан22519.07.2021 02:02
-
daniliwotchesi18.07.2020 17:54
-
slivinskaja8317.09.2020 22:00
-
Neo1111822.06.2023 18:17
-
latifa514.02.2021 10:46
-
дэнчик6023.06.2022 12:05
-
ehl959mailru28.09.2020 10:13
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.