veno1
12.06.2022 03:27
Геометрия
Есть ответ 👍

Площадь правильного многоугольника?

196
257
Посмотреть ответы 2

Ответы на вопрос:

Daryanaa7
4,8(31 оценок)

Для того чтобы вычислить площадь правильного многоугольника его разбивают на равные треугольники с общей вершиной в центре вписанной окружности. а площадь правильного многоугольника равна произведению его полупериметра на радиус вписанной окружности правильного многоугольника 1. s= r·p=12  r·n·an — число сторон правильного многоугольникаp — полупериметр правильного многоугольникаa — сторона правильного многоугольникаr — радиус вписанной окружности правильного многоугольника 2. s=n·a24·tg(360°2n )ну вроде такие формулы.
Anastasii777
4,8(92 оценок)

Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямые. Одна из них пересекает плоскости α и β в точках A₁ и B₁, а другая — в точках A₂ и B₂ соответственно . Найдите отрезок A₁A₂, если он на 1 см меньше отрезка B₁B₂,  MA₂ = 4 см, A₂B₂ = 10 см.

Объяснение:

1) Две пересекающиеся прямые А₁В₁ и А₂В₂ определяют плоскость

(А₁А₂ В₂) единственным образом ( аксиома). Эта плоскость пересекает параллельные плоскости  α и β  по параллельным прямым А₁А₂ и В₁В₂( свойство).

2) ΔМА₁А₂~ΔMB₁B₂  по 2-м углам : ∠А₁МА₂=∠B₁МB₂ как вертикальные ,  ∠А₁А₂М =∠В₁В₂М как накрест лежащие при  А₁А₂ || В₁В₂,  А₂В₂-секущая. Поэтому сходственные стороны пропорциональны

А₁А₂ : В₁В₂ = АМА₂ : МВ₂

А₁А₂ : (А₁А₂+1) = 4: ( 10-4)

4(А₁А₂+1)=А₁А₂*6   ⇒ А₁А₂= 2 cм


Плоскости α и β параллельны. Через точку M, находящуюся между этими плоскостями, проведены две прямы

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS