Ответы на вопрос:
Графік проекції переміщення-це пряма, що виходить з початку координат. Напрямок руху: якщо пряма лежить над віссю часу (піднімається вгору), то тіло рухається в позитивному напрямку осі Ox (прямі 1 і 2); якщо пряма лежить під віссю часу (опускається вниз), то тіло рухається проти осі Ox .
Учёные до сих пор бьются над поиском самых эффективных способов по выработке тока — прогресс устремился от гальванических элементов к первым динамо-машинам, паровым, атомным, а теперь солнечным, ветряным и водородным электростанциям. в наше время самым массовым и удобным способом получения электричества остаётся генератор, приводимый в действие паровой турбиной.
паровые турбины были изобретены задолго до того, как человек понял природу электричества. в этом посте мы расскажем об устройстве и работе паровой турбины, а заодно вспомним, как древнегреческий учёный опередил своё время на пятнадцать веков, как произошёл переворот в деле турбиностроения и почему toshiba считает, что тридцатиметровую турбину надо изготавливать с точностью до 0,005 мм.
как устроена паровая турбина
принцип работы паровой турбины относительно прост, а её внутреннее устройство принципиально не менялось уже больше века. чтобы понять принцип работы турбины, рассмотрим, как работает теплоэлектростанция — место, где ископаемое топливо (газ, уголь, мазут) превращается в электричество.
сама по себе паровая турбина не работает, для функционирования ей нужен пар. поэтому электростанция начинается с котла, в котором горит топливо, отдавая жар трубам с дистиллированной водой, пронизывающим котел. в этих тонких трубах вода превращается в пар.
понятная схема работы тэц, вырабатывающей и электричество, и тепло для отопления домов. источник: мосэнерго
турбина представляет собой вал (ротор) с радиально расположенными лопатками, словно у большого вентилятора. за каждым таким диском установлен статор — похожий диск с лопатками другой формы, который закреплён не на валу, а на корпусе самой турбины и потому остающийся неподвижным (отсюда и название — статор).
пару из одного вращающегося диска с лопатками и статора называют ступенью. в одной паровой турбине десятки ступеней — пропустив пар всего через одну ступень тяжёлый вал турбины с массой от 3 до 150 тонн не раскрутить, поэтому ступени последовательно группируются, чтобы извлечь максимум потенциальной энергии пара.
на вход в турбину подаётся пар с высокой температурой и под большим давлением. по давлению пара различают турбины низкого (до 1,2 мпа), среднего (до 5 мпа), высокого (до 15 мпа), сверхвысокого (15—22,5 мпа) и сверхкритического (свыше 22,5 мпа) давления. для сравнения, давление внутри бутылки шампанского составляет порядка 0,63 мпа, в автомобильной шине легковушки — 0,2 мпа.
чем выше давление, тем выше температура кипения воды, а значит, температура пара. на вход турбины подается пар, перегретый до 550-560 °c! зачем так много? по мере прохождения сквозь турбину пар расширяется, чтобы сохранять скорость потока, и теряет температуру, поэтому нужно иметь запас. почему бы не перегреть пар выше? до недавних пор это считалось чрезвычайно сложным и бессмысленным —нагрузка на турбину и котел становилась критической.
паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры на выходе (снижается давление и температура), после чего уходит в цилиндр среднего давления, а оттуда — низкого. дело в том, что ступени для пара с разными параметрами имеют разные размеры и форму лопаток, чтобы эффективней извлекать энергию пара.
но есть проблема — при падении температуры до точки насыщения пар начинает насыщаться, а это уменьшает кпд турбины. для предотвращения этого на электростанциях после цилиндра высокого и перед попаданием в цилиндр низкого давления пар вновь подогревают в котле. этот процесс называется промежуточным перегревом (промперегрев).
цилиндров среднего и низкого давления в одной турбине может быть несколько. пар на них может подаваться как с края цилиндра, проходя все лопатки последовательно, так и по центру, расходясь к краям, что выравнивает нагрузку на вал.
вращающийся вал турбины соединён с электрогенератором. чтобы электричество в сети имело необходимую частоту, валы генератора и турбины должны вращаться со строго определённой скоростью — в россии ток в сети имеет частоту 50 гц, а турбины работают на 1500 или 3000 об/мин.
говоря, чем выше потребление электроэнергии, производимой электростанцией, тем сильнее генератор сопротивляется вращению, поэтому на турбину приходится подавать бо́льший поток пара. регуляторы частоты вращения турбин мгновенно реагируют на изменения нагрузки и потоком пара, чтобы турбина сохраняла постоянные обороты. если в сети произойдет падение нагрузки, а регулятор не уменьшит объём подаваемого пара, турбина стремительно нарастит обороты и разрушится — в случае такой аварии лопатки легко пробивают корпус турбины, крышу тэс и разлетаются на расстояние в несколько километров.
паровые турбины были изобретены задолго до того, как человек понял природу электричества. в этом посте мы расскажем об устройстве и работе паровой турбины, а заодно вспомним, как древнегреческий учёный опередил своё время на пятнадцать веков, как произошёл переворот в деле турбиностроения и почему toshiba считает, что тридцатиметровую турбину надо изготавливать с точностью до 0,005 мм.
как устроена паровая турбина
принцип работы паровой турбины относительно прост, а её внутреннее устройство принципиально не менялось уже больше века. чтобы понять принцип работы турбины, рассмотрим, как работает теплоэлектростанция — место, где ископаемое топливо (газ, уголь, мазут) превращается в электричество.
сама по себе паровая турбина не работает, для функционирования ей нужен пар. поэтому электростанция начинается с котла, в котором горит топливо, отдавая жар трубам с дистиллированной водой, пронизывающим котел. в этих тонких трубах вода превращается в пар.
понятная схема работы тэц, вырабатывающей и электричество, и тепло для отопления домов. источник: мосэнерго
турбина представляет собой вал (ротор) с радиально расположенными лопатками, словно у большого вентилятора. за каждым таким диском установлен статор — похожий диск с лопатками другой формы, который закреплён не на валу, а на корпусе самой турбины и потому остающийся неподвижным (отсюда и название — статор).
пару из одного вращающегося диска с лопатками и статора называют ступенью. в одной паровой турбине десятки ступеней — пропустив пар всего через одну ступень тяжёлый вал турбины с массой от 3 до 150 тонн не раскрутить, поэтому ступени последовательно группируются, чтобы извлечь максимум потенциальной энергии пара.
на вход в турбину подаётся пар с высокой температурой и под большим давлением. по давлению пара различают турбины низкого (до 1,2 мпа), среднего (до 5 мпа), высокого (до 15 мпа), сверхвысокого (15—22,5 мпа) и сверхкритического (свыше 22,5 мпа) давления. для сравнения, давление внутри бутылки шампанского составляет порядка 0,63 мпа, в автомобильной шине легковушки — 0,2 мпа.
чем выше давление, тем выше температура кипения воды, а значит, температура пара. на вход турбины подается пар, перегретый до 550-560 °c! зачем так много? по мере прохождения сквозь турбину пар расширяется, чтобы сохранять скорость потока, и теряет температуру, поэтому нужно иметь запас. почему бы не перегреть пар выше? до недавних пор это считалось чрезвычайно сложным и бессмысленным —нагрузка на турбину и котел становилась критической.
паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры на выходе (снижается давление и температура), после чего уходит в цилиндр среднего давления, а оттуда — низкого. дело в том, что ступени для пара с разными параметрами имеют разные размеры и форму лопаток, чтобы эффективней извлекать энергию пара.
но есть проблема — при падении температуры до точки насыщения пар начинает насыщаться, а это уменьшает кпд турбины. для предотвращения этого на электростанциях после цилиндра высокого и перед попаданием в цилиндр низкого давления пар вновь подогревают в котле. этот процесс называется промежуточным перегревом (промперегрев).
цилиндров среднего и низкого давления в одной турбине может быть несколько. пар на них может подаваться как с края цилиндра, проходя все лопатки последовательно, так и по центру, расходясь к краям, что выравнивает нагрузку на вал.
вращающийся вал турбины соединён с электрогенератором. чтобы электричество в сети имело необходимую частоту, валы генератора и турбины должны вращаться со строго определённой скоростью — в россии ток в сети имеет частоту 50 гц, а турбины работают на 1500 или 3000 об/мин.
говоря, чем выше потребление электроэнергии, производимой электростанцией, тем сильнее генератор сопротивляется вращению, поэтому на турбину приходится подавать бо́льший поток пара. регуляторы частоты вращения турбин мгновенно реагируют на изменения нагрузки и потоком пара, чтобы турбина сохраняла постоянные обороты. если в сети произойдет падение нагрузки, а регулятор не уменьшит объём подаваемого пара, турбина стремительно нарастит обороты и разрушится — в случае такой аварии лопатки легко пробивают корпус турбины, крышу тэс и разлетаются на расстояние в несколько километров.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Физика
-
businkakiss18.01.2023 14:15
-
baharaliyeva25.07.2022 05:15
-
bettihorvath1318.01.2023 02:44
-
katelove827.02.2020 16:36
-
lizspb812103.04.2020 09:45
-
Olechka7714.05.2020 14:37
-
annyta290802p012i529.05.2020 05:48
-
YuliaLitskevich14.04.2022 12:38
-
AleksaKiki16.09.2022 13:24
-
fghqwert11.01.2020 19:24
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.