7. Наслідками ранніх статевих стосунків підлітка можуть бути: а) кохання
б) ІПСШ
в) вагітність
г) порушення здоров'я
д) розчарування в житті
Ответы на вопрос:
Определение размеров небесных тел и расстояний до них в Солнечной системе
1. Каким образом греческий учёный Эратосфен определил размеры Земли?
Идея Эратосфена заключается в следующем. На одном и том же географическом меридиане земного шара выберем две точки $O_1$ и $O_2.$ Обозначим длину пути меридиана $O_1O_2$ через $l,$ а её угловое значение через $n$ (в градусах). Тогда длина пути $1°$ меридиана $l_0$ будет равна:
$$l_0=\dfrac{l}{n},$$
а длина всей окружности меридиана:
$$L=360°·l_0=\dfrac{360°·l}{n}=2\pi R,$$
где $R$ — радиус земного шара. Отсюда $R=\dfrac{180°·l}{\pi n}.$
2. Как определяют длину дуги меридиана триангуляционным методом?
Длина дуги определяется путём вычислений, требующих измерения только сравнительно небольшого расстояния — базиса и ряда углов. По обе стороны дуги $O_1O_2$, длину которой необходимо определить, выбирается несколько точек $A, B, C, ...$ на взаимных расстояниях до 50 км с таким расчётом, чтобы из каждой из них были видны по меньшей мере две другие точки.
Длину базиса очень тщательно измеряют специальными мерными лентами. Измеренные углы в треугольниках и длина базиса позволяют по тригонометрическим формулам вычислить стороны треугольников, а по ним — длину дуги $О_1О_2$ с учётом её кривизны.
3. Что понимают под горизонтальным параллаксом?
Определение расстояний до тел Солнечной ситсемы основано на измерении их горизонтальных параллаксов. Горизонтальный параллакс — угол $p,$ под которым со светила виден радиус Земли, перпендикулярный к лучу зрения.
4. Как определить расстояние до светила, зная его горизонтальный параллакс?
Зная горизонтальный параллакс светила, можно определить его расстояние $D.$ Расстояние до светила $D=S=\dfrac{R_⊕}{\sin p},$ где $R_⊕$ — радиус Земли. Приняв $R_⊕$ за единицу, можно выразить расстояние до светила в земных радиусах.
5. Что такое астрономическая единица?
Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а.е.), которая равна среднему расстоянию Земли от Солнца(1 а.е. ≈ 149 600 000 км).
6. на каком расстоянии от Земли находится небесное тело, если его горизонтальный параллакс равен 1''?
Для нахождения расстояния применим формулу:
$$D=\dfrac{206265''}{p''}R_⊕.$$
Приняв радиус Земли $6371\, км,$ получим $D=1\, 314\, 114\, 315\, км,$ или $8.8\, а.е.$
7. В чём состоит радиолокационный метод определения расстояний до небесных тел?
Расстояние до объекта по времени прохождения радиолакационного сигнала можно определить по формуле $S=\dfrac{1}{2}ct,$ где $S$ — расстояние до объекта; $c$ — скорость светы; $t$ — время прохождения сигнала до объекта и обратно.
8. Определите линейный радиус луны, если во время наблюдений стало известно, что её горизонтальный параллакс в это время равен $57',$ а угловой радиус — $15,5'.$ Радиус Земли принять равным $6400$ км.
Дано:
$p = 57',$
$ρ = 15.5',$
$R_З = 6400\, км.$
$R - ?$
Найдём расстояние $D$ до Луны:
$D=\dfrac{R_З}{\sin p};$ $D=\dfrac{6400}{\sin 0.95°} \approx 3.86 · 10^5\, км.$
Вычислим линейный радиус:
$R=D·\sin ρ;$ $R = 3.86 · 10^5 · \sin 0.26° \approx 1752\, км.$
ответ: $1752\, км.$
Объяснение:
Вот так както!
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Другие предметы
-
romankulikov2026.11.2021 01:18
-
VaDiMiR300002.09.2021 11:29
-
ladiaginairina14.05.2021 16:17
-
smartass212.11.2021 14:32
-
Arina11193327.03.2020 11:15
-
DimazCheat07.10.2020 07:35
-
Griezman704.02.2021 15:46
-
khgfdl20.12.2020 04:29
-
Камишок77715.08.2020 22:46
-
d2e0n0i5s07.01.2023 06:17
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.