Ответы на вопрос:
Жиын ұғымы — математиканың негізінде жатқан жалпы ұғымдардың бірі. Сондықтан жиын ұғымының дәл анықтамасын беру мүмкін емес. Біз жиын деп нені түсінетінімізді ғана айта аламыз. Әдетте жиын ретінде әртүрлі объектілердің алдын ала берілген ерекшеліктері бойынша топтастырылуын айтамыз.
Жиындарды үлкен латын әріптері арқылы белгілейміз: {\displaystyle A,B,C,X,I,Z}{\displaystyle A,B,C,X,I,Z} және т.б. Жиынды қүрайтын объектілер осы жиынның элементтері деп аталады. Жиын элементтері кіші латын әріптерімен белгіленеді: {\displaystyle a,b,c,x,u,v}{\displaystyle a,b,c,x,u,v} және т. б. Қажет болғанда төменгі және жоғарғы индекстер еркін қолданылады.
Егер {\displaystyle x}{\displaystyle x} объектісі {\displaystyle A}{\displaystyle A} жиынының элементі болса, бұл жағдай {\displaystyle x\in A}{\displaystyle x\in A} белгісімен таңбаланады және "{\displaystyle x}{\displaystyle x} элементі {\displaystyle A}{\displaystyle A} жиынына тиісті" деп оқылады.
Егер {\displaystyle x}{\displaystyle x} объектісі {\displaystyle A}{\displaystyle A} жиынынан тыс болса, оны {\displaystyle x\notin A}{\displaystyle x\notin A} арқылы белгілеп, "{\displaystyle x}{\displaystyle x} элементі {\displaystyle A}{\displaystyle A} жиынына тиісті емес" деп оқимыз.
Қоршаған орта немесе ғылыми пәндердің қай-қайсысы болса да жиын ұғымына қажетті мысалдардың кез келген түрін бере алады. Айталық, өсімдіктер түрлері, кітаптар, жай сандар, жазықтықтағы түзулер - жиын ұғымының мысалдары. Алғашқы екеуі ақырлы жиындардың мысалын берсе, соңғы екеуі ақырсыз жиындардың мысалы болады.
Жиындарды олардың элементтерінің тізімін немесе олардың элементеріне ортақ қасиеттерді көрсету жолымен беруге болады. Мысалы, {\displaystyle A=\{a_{1},a_{2},\ldots ,a_{n}\}}{\displaystyle A=\{a_{1},a_{2},\ldots ,a_{n}\}} жэне {\displaystyle B=\{x|x-}{\displaystyle B=\{x|x-}тақ сан {\displaystyle \}}{\displaystyle \}} . Осы екі жолмен анықталған, бірі ақырлы, бірі ақырсыз жиындардың мысалдары бола алады.
Жиындардың мысалдары:
{\displaystyle \mathbb {N} =\{0,1,2,3,\ldots \}}{\displaystyle \mathbb {N} =\{0,1,2,3,\ldots \}} - натурал сандар жиыны;
{\displaystyle \mathbb {Z} =\{0,\pm 1,\pm 2,\pm 3,\ldots \}}{\displaystyle \mathbb {Z} =\{0,\pm 1,\pm 2,\pm 3,\ldots \}} - бүтін сандар жиыны;
{\displaystyle \mathbb {Q} =\{{\frac {m}{n}}|m\in \mathbb {Z} ,n\in \mathbb {N} \}}{\displaystyle \mathbb {Q} =\{{\frac {m}{n}}|m\in \mathbb {Z} ,n\in \mathbb {N} \}} - рационал сандар жиыны;
{\displaystyle \mathbb {R} }{\displaystyle \mathbb {R} } - нақты сандар жиыны кеңінен қолданылады.
Пошаговое объяснение:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
помошник1234567891017.11.2020 10:05
-
name6414.02.2021 12:42
-
razumova2230.01.2021 08:03
-
mashav88202.12.2022 02:40
-
NastyaSukorkina25.05.2020 17:15
-
Anuraoaoap14.12.2022 07:08
-
AlminaLaipanova17.01.2020 08:23
-
AMAYA00011.10.2021 16:28
-
annajellycat22.09.2020 18:34
-
Артем1522789701.06.2020 17:50
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.