revon
06.09.2021 17:20
Геометрия
Есть ответ 👍

Найдите площадь трапеции, параллельные стороны которой равны 16см и 44см, а не параллельные - 17см и 25см. ​

286
425
Посмотреть ответы 2

Ответы на вопрос:

longer123
4,6(66 оценок)

Есть формула:

Формула для нахождения площади трапеции через четыре стороны: {S=\dfrac{a+b}{2}\sqrt{c^2-\Big(\dfrac{(a-b)^2+c^2-d^2}{2 (a-b)}\Big)^2}} , где a, b — основания трапеции, c, d — боковые стороны трапеции.

Можно применить разделение трапеции на 2 фигуры.

Если провести из точки С отрезок, равный и параллельный стороне АВ, то получим параллелограмм и треугольник с известными сторонами 17, 25 и 28.

По формуле Герона находим площадь треугольника.

Полупериметр р = 35 . S = √(35*18*10*7) = 210.

Находим высоту треугольника (она же высота трапеции).

h = 2S/28 = 2*210/28 = 15.

ответ: Sтрап = 16*15 + 210 = 240 + 210 = 450 кв.ед.

Объяснение:

fatimarukir
4,7(23 оценок)

Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при  в   равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под   номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS