007238
20.07.2022 15:19
Геометрия
Есть ответ 👍

Https://ruobr.ru/media/lesson_docs/c18172cf15b64fe7abccd6e0c974abaf.jpg

287
352
Посмотреть ответы 1

Ответы на вопрос:

Mariyana10
4,7(47 оценок)

Что-то не так. во-первых, опечатка - не призма, а пирамида. во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды. значит, считаем, что это 4-угольная правильная пирамида. в основании квадрат. в пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней). я сделал рисунок. там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным. нижние вершины куба лежат на средних линиях основания km и ln. справа я нарисовал сечение пирамиды плоскостью sln. в сечении будет равнобедренный треугольник, а в него вписан прямоугольник prr1p1, у которого высота pp1 = rr1 = x - стороне куба, а основание pr = p1r1 = x√2 - диагонали грани куба. теперь решаем . сторона основания пирамиды а, диагональ ac = bd = a√2, oc = a√2/2, угол наклона бокового ребра α. в треугольнике aos катет os=h=ao*tg α=a*√2/2*tg α. в треугольнике los катет ol = a/2, по теореме пифагора sl^2 = ol^2 + os^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α) sl = a/2*√(1 + 2tg α) угол наклона апофемы к плоскости основания ols = β: tg β = os/ol = (a*√2/2*tg α) : (a/2) = √2*tg α в треугольнике rr1l катет rl = rr1/tg β = x/(√2*tg α) = x√2/(2tg α) но мы знаем, что pr = x√2 и np = rl. получаем nl = np + pr + rl a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS