Есть ответ 👍

Определённый интеграл и его свойства. Формула Ньютона-Лейбница

184
457
Посмотреть ответы 2

Ответы на вопрос:


Пусть функция y = f(x) непрерывна на отрезке [a; b] и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница: формула.

Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления.

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.

Если функция y = f(x) непрерывна на отрезке [a; b], то для аргумента формула интеграл вида формула является функцией верхнего предела. Обозначим эту функцию формула, причем эта функция непрерывная и справедливо равенство формула.

Действительно, запишем приращение функции формула, соответствующее приращению аргумента формула и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:

формула

где формула.

Перепишем это равенство в виде формула. Если вспомнить определение производной функции и перейти к пределу при формула, то получим формула. То есть, формула - это одна из первообразных функции y = f(x) на отрезке [a; b]. Таким образом, множество всех первообразных F(x) можно записать как формула, где С – произвольная постоянная.

Вычислим F(a), используя первое свойство определенного интеграла: формула, следовательно, формула. Воспользуемся этим результатом при вычислении F(b): формула, то есть формула. Это равенство дает доказываемую формулу Ньютона-Лейбница формула.

Приращение функции принято обозначать как формула. Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид формула.


M-3; n; n+5; должно быть так

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS