Найти частное решение линейного неоднородного дифференциального уравнения второго порядка, удовлетворяющее начальным условиям
Ответы на вопрос:
ответ:5
Пошаговое решение
1) \\ \sqrt{7 + 4 \sqrt{3} } + \sqrt{7 - 4 \sqrt{3} } = \sqrt{4 + 2 \times 2 \sqrt{3} + 3 } } + \sqrt{4 - 2 \times 2 \sqrt{3} + 3 }
Под корнем получаем полный квадрат, свернем его:
\sqrt{(2 + \sqrt{3}) {}^{2} } + \sqrt{(2 - \sqrt{3} ) {}^{2} } = |2 + \sqrt{3} | + |2 - \sqrt{3} |
Первый модуль раскрыли с плюсом, т.к. 2 + sqrt(3) > 0, второй модуль раскрыли так же с плюсом, т.к. 2 > sqrt(3)
|2 + \sqrt{3} | + |2 - \sqrt{3} | = 2 + \sqrt{3} + 2 - \sqrt{3} = 4
ответ: 4.
2) \\ \frac{ \sqrt{3} + \frac{}{} \sqrt{2} }{ \sqrt{3} - \sqrt{2} } - 2 \sqrt{6} = \frac{( \sqrt{3} + \sqrt{2} ) {}^{2} }{( \sqrt{3} - \sqrt{2})( \sqrt{3} + \sqrt{2} )} - 2 \sqrt{6} = \frac{ 3+ 2 \sqrt{6} + 2 }{( \sqrt{3} ) {}^{2} - ( \sqrt{2} ) {}^{2} } - 2 \sqrt{6} = \frac{5 + 2 \sqrt{6} }{3 - 2} - 2 \sqrt{6} = \frac{5 + 2 \sqrt{6} }{1} - 2 \sqrt{6} = 5 + 2 \sqrt{6} - 2 \sqrt{6} = 5
ответ: 5
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
Tosya0310.04.2023 11:10
-
ЭляВ198814.01.2022 12:34
-
aellazhumashovа23.07.2021 23:49
-
Kopek13.06.2022 07:00
-
newzorowaa201807.03.2021 11:28
-
SAIIIEK04.05.2022 20:33
-
Sakura17124.08.2020 09:00
-
Demiali4120.07.2020 10:12
-
gurova0706.08.2022 08:58
-
Anna20068989809865418.06.2021 05:24
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.