18larina18
13.01.2022 23:00
Алгебра
Есть ответ 👍

Выполните деление только 298 и это 7-класс по Алгебре​

280
335
Посмотреть ответы 1

Ответы на вопрос:


Task/27265129 решить  уравнение  lg(ax)=2lg(x+1)      (1)одз :   { ax > 0 ,  x+1 > 0 . lg(ax) = 2lg(x+1) ⇔ lg(ax) = lg(x+1)²  ⇔ ax = (x+1)² ⇔ ax =  x²+2x+1   ⇔ x² + (2 -a)*x +1 =0      (2) уравнение (2) имеет решение ,если    d =(2-a)² - 4 = a² - 4a  =a(a -  4)  ≥ 0, т.е. ,  если  a  ∈ ( -∞; 0]  ∪ [4 ; +∞).    //////////////// [0] [4] //////////////// x₁  = (a - 2 - √(a² -  4a)  ) /2 ,              * * *  x₂  +1 =    (a -  √d) /2    * * * x₂ = (a - 2+√(a² -  4a)  ) /2) .            * * *  x₂  +1 =    (a +  √d) /2  * * * при a = 0  ⇒ ax =0  (не выполняется  неравенство  ax >   0    системы одз)  уравнение  (1)  не имеет решение .  при a = 4    ⇒ x₁  =x₂  =1.  уравнение (1) имеет единственное  решение x₁  =x₂  =1  .    a ∈ ( -∞; 0 )    ∪ ( 4 ; +∞) .  * * * * * * * * * * * * * * * * * a ∈ ( -∞ ; 0  )        * * *    a < 0  * * * {x₁ + x₂ = a -2 <   0 , {x₁ * x₂  = 1  .              оба  корня уравнения  (2)  отрицательны ,следовательно  ax₁ > 0 и  ax₂  > 0 , но x₁ +1 =    (a    -  √(a²-4a) ) /2   < 0    x₂  +1 =    (a +  √(a²-4a) ) /2    > 0  уравнение (1) имеет единственное  решение x₂=(a -2+  √(a²-4a)) /2  .    a ∈ ( 4  ; +∞   )              * * *    a  > 4    * * * {x₁ + x₂ =  a -2 >     2 , {x₁ * x₂    = 1  .      оба корня уравнения    (2) положительны  уравнение (1) имеет два решения.    ответ:   a ∈ [ 0 ; 4)              ⇒  нет  решения ,               a  ∈ (-∞ ; 0)  ∪ {4}        ⇒одно решение: x =(a -2+  √(a²-4a)) /2 ,               a  ∈ (4 ; +∞)              ⇒    два  решения: x₁ = (a -2 -  √(a²-4a)) /2 и                                                                         x₂ = (a -2+  √(a²-4a)) /2 .

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS