Есть ответ 👍

K(m-n) =
A) km-n 5)n-km B) 8( c + 1))
km - kn
Контрольная

117
266
Посмотреть ответы 2

Ответы на вопрос:


1) Доказательство: Проведём диагональ KM.∠LKM = ∠KMN, так как LM║KN.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона, ∠1 = ∠2 ; ∠3 = ∠4 (как накрест лежащие углы при параллельных прямых.LM = KN (по условию) ⇒ ΔKLM = ΔMNK по стороне и двум прилежащим к ней углам.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ LK = MN. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.

ответ: что и требовалось доказать.

2) Доказательство: Проведём диагональ KM.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона, KL = NM ; LM = KN (по условию).⇒ ΔKLM = ΔMNK по трём сторонам.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ KL = NM ; LM = KN. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.

ответ: что и требовалось доказать.

3) Доказательство: Проведём диагональ KM.Рассмотрим ΔKLM и ΔMNK.KM - общая сторона ; ∠K = ∠M ; ∠L = ∠N (по условию).Так как ∠K = ∠M, то будет справедливо, что ∠1 = ∠2 ; ∠3 = ∠4. ⇒  ΔKLM = ΔMNK по стороне и двум прилежащим к ней углам.Так как треугольники равны, то и их соответствующие элементы равны.

⇒ KL = NM ; LM = KN. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.

ответ: что и требовалось доказать.

4) Доказательство: Рассмотрим ΔLOK и ΔMON.KO = OM ; LO = ON (по условию), ∠LOK = ∠LON (вертикальные). ⇒  ΔLOK = ΔMON по двум сторонам и углу между ними.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ KL = NM.Аналогично и с ΔKON = ΔLOM. ⇒ KN = LM. ⇒ KLMN- параллелограмм по первому свойству параллелограмма.

ответ: что и требовалось доказать.

Пошаговое объяснение:

Adidasler05
4,6(84 оценок)

8 5/8 + 3 7/9 = 12 29/72

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS