Ответы на вопрос:
Объяснение:
Теорема:
Биссектрисы АА1, ВВ1, СС1 треугольника пересекаются в одной точке О
Доказательство:
Рассмотрим сначала две биссектрисы ВВ1 и СС1. Они пересекаются, точка пересечения О существует. Чтобы доказать это, предположим противное: пусть данные биссектрисы не пересекаются, в таком случае они параллельны. Тогда прямая ВС является секущей и сумма углов <B/2+С/2=180 , это противоречит тому, что во всем треугольнике сумма углов .
Итак, точка О пересечения двух биссектрис существует. Рассмотрим ее свойства:
Точка О лежит на биссектрисе угла B, значит, она равноудалена от его сторон ВА и ВС. Если ОК – перпендикуляр к ВС, OL – перпендикуляр к ВА, то длины этих перпендикуляров равны –OK=OL . Также точка О лежит на биссектрисе УГЛА C и равноудалена от его сторон CВ и СА, перпендикуляры ОМ и ОК равны.
OK=OL
OK=OM
Нас интересует равенство перпендикуляров OL и ОМ. Это равенство говорит о том, что точка О равноудалена от сторон угла A, отсюда следует, что она лежит на его биссектрисе АА1.
Таким образом, мы доказали, что все три биссектрисы треугольника пересекаются в одной точке.
Кроме того, треугольник состоит из трех отрезков, значит, нам следует рассмотреть свойства отдельного отрезка.
Задан отрезок АВ. У любого отрезка есть середина, и через нее можно провести перпендикуляр – обозначим его за р. Таким образом, р – серединный перпендикуляр.
Любая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
Даша170715.10.2021 12:49
-
Милка9880630.03.2022 00:12
-
peppapig1221.12.2021 00:50
-
pchehov7715.04.2021 14:07
-
NyushaLove06.01.2020 06:19
-
Stan018.08.2022 08:39
-
kekys32626.10.2021 22:11
-
konoplynkoyanoka24.10.2022 03:27
-
Блейк5112.04.2022 23:41
-
Malifisen30.04.2022 17:22
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.