Есть ответ 👍

На плоскости дано бесконечное множество точек S, при этом в любом квадрате 1 × 1 лежит конечное число точек из множества S. Докажите, что найдутся две разные точки A и B из S такие, что для любой другой точки X из S выполняется: |XA|,\;|XB| ≥ 0,999|AB|.

193
213
Посмотреть ответы 2

Ответы на вопрос:


Докажем утверждение задачи от противного.

Можно предположить, что для любых двух разных точек A и B из S найдется отличная от них точка X из S такая, что либо XA < 0,999AB, либо XB < 0,999AB.

Переформулируем вышеприведенное утверждение: для любого отрезка I с концами в S и длиной l найдется отрезок I′ с концами в S длины не более 0,999l, один из концов которого совпадает с некоторым концом I.

Или, иначе говоря, I′ пересекает I.

Возьмем теперь первый отрезок I1 длины l и будем брать отрезки I2, I3, …так, что Ik + 1 пересекается с Ik и |Ik + 1| < 0,999|Ik|.

Все эти отрезки имеют концы в S. Ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца Ik до любого конца I1 не превосходит

Следовательно, в квадрате 2000l × 2000l с центром в любом из концов I1 лежит бесконечное число точек S.

Но из условия следует конечность их числа в любом квадрате.

Полученное противоречие завершает доказательство.

Объяснение:

Iliyz
4,8(49 оценок)

конечно же открытие нового предприятия является знаменательным событием, потому что это несёт некий доход в городскую казну ( не будем уж о государстве)

я являюсь потребителем. родители тоже являются потребителями (родители, также, платят налоги, жкх и т.п - подробности)

нужно определиться, что мы хотим. это должно быть полезно и нужно нам, поэтому среди основных товаров мы приобретаем именно тот, который мы можем оплатить, и который будет нам нужен.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Обществознание

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS