Пусть AD — биссектриса треугольника ABC, и прямая l касается окружностей, описанных около треугольников ADB и ADC в точках M и N соответственно.
Докажите, что окружность, проходящая через середины отрезков BD, DC и MN, касается прямой l.
Ответы на вопрос:
Решение 1.
Обозначим центры окружностей, описанных около треугольников ADB и ADC через O1 и O2, а середины отрезков BD, DC, MN, DO2 и O1O2 — через A1, A2, K, E и O соответственно (см. рис.). Пусть ∠ BAD = ∠ CAD = α . Тогда ∠ A1O1D = ∠ A2O2D = α (так как половина центрального угла равна вписанному, опирающемуся на ту же дугу). Отрезок OK — средняя линия трапеции (или прямоугольника) O1MNO2, следовательно, OK ⊥ l, и . Заметим, что точки E, O и A2 лежат на одной прямой, так как ∠ OEO2 + ∠ O2EA2 = ∠ O1DO2 + ∠ O2EA2 = ∠ O1AO2 + (180° – ∠ DO2C) = 2 α + (180° – 2 α ) = 180°, т.е. OK = OE + EA2 = OA2. Аналогично доказывается, что OA1 = OK. Значит, точки A1, A2 и K лежат на окружности с центром O, а так как OK ⊥ l, то эта окружность касается прямой l.
Случай, когда вместо прямой l рассматривает-ся прямая l1, разбирается аналогично.
Решение 2.
Пусть радиусы окружностей, описанных около треугольников ADB и ADC равны R1 и R2. Если эти радиусы различны, то прямая l пересекает линию центров O1O2 в точке O (см. рис.). Пусть OD пересекает окружности в точках B′ и C′, и OA пересекает ω в точке A′. При гомотетии H с центром O и коэффициентом точки C′, D и A переходят в точки D, B′ и A′ соответственно, следовательно, ∠ DAC′ = ∠ B′A′D. С другой стороны, ∠ B′A′D = ∠ B′AD, поэтому ∠ B′AD = ∠ C′AD. А это означает, что точки B′ и C′ совпадают с точками B и C, так как в противном случае один из углов BAD и CAD был бы меньше α , а другой — больше α ( α = ∠ B′AD = ∠ C′AD).
Рассмотрим гомотетию H1 с центром O, переводящую ω 2 в окружность ω , проходящую через точку E — середину отрезка MN. Из того, что l проходит через точку O и ω 2 касается l, следует, что ω касается l в точке E. Кроме того, из гомотетичности треугольников ONC и OMD (гомотетия H) следует, что NC || MD. Кроме того, H1(C) = C1, где EC1 || NC. Поэтому EC1 — средняя линия трапеции CNMD, т.е. гомотетия H1 переводит точку C в середину DC. Аналогично, она переводит D в середину отрезка BD. Значит, ω проходит через середины отрезков BD и DC.
Если же R1 = R2, то вместо гомотетии следует рассмотреть параллельный перенос на вектор .
Решение 3.
Пусть R1 ≠ R2. Проведем перпендикуляр SO к плоскости π , содержащей окружности ω 1 и ω 2 (см. обозначения в предыдущем решении). Нетрудно понять, что пересечение (наклонного) конуса с вершиной S и основанием ω 1 и прямого кругового цилиндра с основанием ω 2 является окружность, равная ω 2 и лежащая в плоскости π 1 || π . Глядя на рис., заключаем, что ортогональной проекцией на плоскость π пересечения конуса и плоскости, равноудаленной от π и π 1 является окружность, проходящая через середины отрезков BD, DC и MN и касающаяся прямой MN.
В случае R1 = R2 вместо конуса следует рассмотреть (наклонный) цилиндр с основанием ω 1.
Объяснение:
Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l .
Решение
Обозначим центры окружностей, описанных около треугольников ADB и ADC через O1 и O2 (рис.1), а середины отрезков BD , DC , MN , DO2 и O1O2 – через A1 , A2 , K , E и O соответственно. Пусть BAD = CAD = α . Тогда
BO1D = DO2C = 2α, A1O1D = A2O2D = α,
O1DO2 = 180o - ( BDO1+ CDO2)=
=180o - (90o-α) -(90o-α)= 2α.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Обществознание
-
MinecraftAndSchool31.10.2020 08:42
-
superojgfhijdf31.12.2021 09:02
-
SuЯfeЯ03.12.2020 05:27
-
ReyLiv15.09.2020 22:57
-
bershteindanik09.06.2020 06:31
-
dianapavliska217.12.2022 01:26
-
Omniscient1www17.12.2022 08:36
-
Romchik111111103.07.2022 19:54
-
huifufjvJf14.03.2022 16:43
-
Dog1234722.07.2022 11:30
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.