Есть ответ 👍

Записать в тригонометрической форме и возвести в степень.
СТРОЧНО

300
500
Посмотреть ответы 2

Ответы на вопрос:

elisavetto4ka
4,7(14 оценок)

Возводить в натуральную степень n, если она достаточно велика, комплексные числа проще всего в тригонометрической форме, то есть если число z=a+bi задано в алгебраической форме, то его изначально надо записать в тригонометрической.

Пусть число z=|z|(cosϕ+isinϕ), тогда умножая его само на себя n раз (что эквивалентно тому, что мы его возводим в степень n), получим:

zn=(|z|(cosϕ+isinϕ))n=|z|n(cosnϕ+isinnϕ)

Таким образом, модуль степени комплексного числа равен той же степени модуля основания, а аргумент равен аргументу основания, умноженному на показатель степени.

Если |z|=1, то получаем, что

zn=(cosϕ+isinϕ)n=cosnϕ+isinnϕ

Данная формула называется формулой Муавра (Абрахам де Муавр (1667 - 1754) - английский математик).

Пример

Задание. Найти z20, если z=12+3√2i

Решение. Вначале запишем заданное комплексное число в тригонометрической форме, для этого вычислим его модуль и аргумент:

|z|=∣∣12+3√2i∣∣=(12)2+(3√2)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾√=14+34‾‾‾‾‾‾√=44‾‾√=1

argz=arg(12+3√2i)=arctg3√212=arctg3‾√=π3

Тогда

z=1⋅(cosπ3+isinπ3)=cosπ3+isinπ3

А отсюда, согласно формуле, имеем:

z20=(cosπ3+isinπ3)20=cos(20⋅π3)+isin(20⋅π3)=

=cos20π3+isin20π3=cos21π−π3+isin21π−π3=

=cos(7π−π3)+isin(7π−π3)=cos(π−π3)+isin(π−π3)=

=−cosπ3+isinπ3=−12+i⋅3√2=−12+3√2i

ответ. z20=−12+3√2i

Читать дальше: извлечения корня из комплексного числа.

Слишком сложно?

Возведение комплексного числа в натуральную степень не по зубам? Тебе ответит эксперт через 10 минут!

Опиши задание

Пошаговое объяснение:

anastia15
4,4(37 оценок)

30 тут и без калькулятора можно решить)

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS