Точка O – центр окружности, описанной вокруг равнобедренного треугольника ABC с основанием AB. KA – касательная к данной окружности в точке А. KB∥AC. Перерисуйте рисунок и докажите, что:
а) ∠ACB=∠KAB; ( )
б) ∆KAB – равнобедренный; ( )
в) отношение площадей треугольников ACB и KAB не зависит от линейных размеров сторон треугольников, а определяется только величиной ∠ACB. ( )
Ответы на вопрос:
Доказательства в объяснении.
Объяснение:
1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а вписанный угол равен половине градусной меры дуги, на которую он опирается.
Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.
2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС. ∠АСВ = ∠КАВ (доказано выше).
По сумме внутренних углов треугольников АВС и КАВ имеем:
∠АВС = 180 - (∠АСВ + ∠ВАС)
∠АКВ = 180 - (∠КАВ + ∠АВК) =>
∠АВС = ∠АКВ. => ∠АВК = ∠АКВ =>
Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.
3. Треугольники АСВ и КАВ подобны по 2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sabc/Sabk = k² = АС²/АВ².
По теореме косинусов в тр-ке АВС найдем:
АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).
Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>
к² зависит только от угла α, то есть
отношение площадей зависит только от величины угла АСВ.
Что и требовалось доказать
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
bezrodnayamila29.12.2020 10:33
-
nek2017pro07.10.2022 17:22
-
вікуся4023.08.2022 21:34
-
aigul24514.05.2023 12:25
-
kamiramasirovEasyran25.06.2020 18:22
-
msganny23.11.2020 13:29
-
fgf1407.09.2021 02:58
-
svet0chka03.01.2022 20:05
-
ян617.06.2022 18:34
-
Apelsinka098626.03.2023 15:43
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.