Есть ответ 👍

Точка O – центр окружности, описанной вокруг равнобедренного треугольника ABC с основанием AB. KA – касательная к данной окружности в точке А. KB∥AC. Перерисуйте рисунок и докажите, что:

а) ∠ACB=∠KAB; ( )

б) ∆KAB – равнобедренный; ( )

в) отношение площадей треугольников ACB и KAB не зависит от линейных размеров сторон треугольников, а определяется только величиной ∠ACB. ( )

244
496
Посмотреть ответы 2

Ответы на вопрос:

kostya2031
4,6(42 оценок)

Доказательства в объяснении.

Объяснение:

1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а  вписанный угол равен половине градусной меры дуги, на которую он опирается.

Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.

2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС.   ∠АСВ = ∠КАВ (доказано выше).

По сумме внутренних углов треугольников АВС и КАВ имеем:

∠АВС = 180 - (∠АСВ + ∠ВАС)  

∠АКВ = 180 - (∠КАВ + ∠АВК)   =>

∠АВС = ∠АКВ.  =>  ∠АВК = ∠АКВ  =>

Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.  

3. Треугольники АСВ и КАВ подобны по  2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).

Площади подобных треугольников относятся как квадрат коэффициента подобия.

Sabc/Sabk = k² = АС²/АВ².

По теореме косинусов в тр-ке АВС найдем:

АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).  

Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>  

к² зависит только от угла α, то есть  

отношение площадей зависит только от величины угла АСВ.

Что и требовалось доказать

inara12345
4,7(31 оценок)

Bc= ас + сн

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS