ДАЮ Центр O окружности, проходящей через середины сторон треугольника ABC, лежит на биссектрисе угла BAC. Кроме того, он лежит на окружности, проходящей через середины сторон AB и AC (точки С1 и B1 соответственно) и вершину А. Найдите AB, если AC=2, а BC=√28
Ответы на вопрос:
Пусть A1, B1 и C1 — середины BC, AC и AB соответственно, O — центр данной окружности, $ \angle$ACB = $ \alpha$.
Поскольку $ \angle$A1C1B1 = $ \angle$ACB = $ \alpha$, то треугольник A1B1C1 равен треугольнику B1A1C. Следовательно, радиусы данной окружности и окружности, описанной около треугольника A1B1C, равны.
Пусть прямая OC пересекает вторую окружность в точке M. Тогда MA1 = MB1 и OA1 = OB1. Поэтому, если точки O и M не совпадают, то OC $ \perp$ A1B1, а т.к. CO — биссектриса угла ACB, то CA1 = CB1 и AC = BC = 4. В этом случае
AC + BC = 4 + 4 = 8 < 2$\displaystyle \sqrt{19}$ = AB,
что невозможно. Значит, предположение о том, что точки M и O совпадают, не верно.
Таким образом, центр второй окружности лежит на первой. Тогда
$\displaystyle \angle$A1OB1 + $\displaystyle \angle$A1CB1 = 180o,
т.е.
2$\displaystyle \alpha$ + $\displaystyle \alpha$ = 180o, $\displaystyle \alpha$ = 60o.
Обозначим AC = x. Тогда по теореме косинусов
x2 + 16 - 4x = (2$\displaystyle \sqrt{19}$)2.
Из этого уравнения находим, что x = 10.
ответ
10.
Объяснение:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
maksi7114.12.2021 16:30
-
ручка4128.03.2022 06:17
-
денис109529.10.2021 00:38
-
tanyainua08.07.2022 02:31
-
Yanalime200612.01.2023 04:00
-
Клава1111128.08.2021 12:22
-
Опз228.05.2023 06:33
-
LLlABEPМА26.09.2022 20:26
-
АлинаКовтун18.02.2021 13:34
-
Foxer3020.07.2021 10:24
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.