Ответы на вопрос:
Пошаговое объяснение:
Сторона основания правильной треугольной пирамиды равна a. Боковое ребро образует с плоскостью основания угол 60°. Найдите радиус сферы, описанной около пирамиды.
Решение.
Пусть ABCP — данная правильная треугольная пирамида с вершиной P, AB = BC = AC = a, M — центр равностороннего треугольника ABC, ∠PAM = ∠PBM = ∠PCM = 60°. Поскольку пирамида правильная, PM — её высота. Из прямоугольного треугольника PAM находим, что
Поскольку центр описанной сферы равноудалён от вершин основания ABC, он лежит на прямой PM. Рассмотрим сечение пирамиды ABCP плоскостью, проходящей через точки A, P и середину L ребра BC. Получим треугольник APL, вершины A и P которого расположены на окружности с центром, лежащим на высоте PM, причём радиус R этой окружности равен радиусу сферы, описанной около пирамиды ABCP, и AM = 2ML.
Продолжим AL до пересечения с окружностью в точке Q. Поскольку ∠PAQ = 60° и PQ = AP, треугольник APQ — равносторонний, поэтому
Второй Пусть ABCP — данная правильная треугольная пирамида с вершиной P, AB = BC = AC = a, M — центр равностороннего треугольника ABC, ∠PAM = = ∠PBM = ∠PCM = 60°. Поскольку пирамида правильная, PM — её высота.
Из прямоугольного треугольника AMP находим, что
Поскольку центр описанной сферы равноудалён от вершин основания ABC, он лежит на прямой PM.
Продолжим высоту PM пирамиды до пересечения с описанной сферой в точке Q. Рассмотрим сечение пирамиды ABCP плоскостью, проходящей через точки A, P и Q. Поскольку PQ — диаметр окружности, радиус которой равен искомому радиусу R сферы, треугольник APQ — прямоугольный. Отрезок AM — его высота, проведённая из вершины прямого угла. Значит, AM2 = PM · MQ = PM(PQ − PM), или
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
superparty29.10.2022 12:26
-
TMTEMI16.06.2021 06:24
-
korolevdanil9926.10.2022 23:56
-
katiabrandt1706.09.2020 11:55
-
elcapone77721.08.2020 17:54
-
olyadudina9804.02.2021 18:36
-
nastya788rf24.07.2020 10:58
-
LOL1241111107.10.2021 21:56
-
zhiestZAlm07.12.2022 01:56
-
Sanek1222102.05.2021 03:10
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.