Через начало координат провести плоскость, параллельную двум скрещивающимся прямым
Ответы на вопрос:
Рассмотрим плоскость и прямую , заданную точкой и направляющим вектором .
Существует три варианта взаимного расположения прямой и плоскости:
1) прямая пересекает плоскость в некоторой точке ;
2) прямая параллельна плоскости: ;
3) прямая лежит в плоскости: . Да, так вот нагло взяла, и лежит.
Как выяснить взаимное расположение прямой и плоскости?
Изучим аналитические условия, которые позволят нам ответить на данный вопрос. Выполним схематический чертёж, на котором прямая пересекает плоскость:
Прямая пересекает плоскость
Прямая пересекает плоскость тогда и только тогда, когда её направляющий вектор не ортогонален вектору нормали плоскости.
Из утверждения следует, что скалярное произведение вектора нормали и направляющего вектора будет отлично от нуля: .
В координатах условие запишется следующим образом:
Если же данные векторы ортогональны, то есть если их скалярное произведение равно нулю: , то прямая либо параллельна плоскости, либо лежит в ней:
Прямая параллельна плоскостиПрямая лежит в плоскости
Разграничим данные случаи.
Если прямая параллельна плоскости, то точка (а значит, и ЛЮБАЯ точка данной прямой) не удовлетворяет уравнению плоскости: .
Таким образом, условие параллельности прямой и плоскости записывается следующей системой:
Если прямая лежит в плоскости, то точка (а, значит, и ЛЮБАЯ точка данной прямой) удовлетворяет уравнению плоскости: .
Аналитические условия данного случая запишутся похожей системой:
Разборки с взаимным расположением прямой и плоскости достаточно примитивны – всего в два шага. Кроме того, на практике можно обойтись даже без значка системы. Исследование взаимного расположения прямых в пространстве, которое проводилось на уроке Задачи с прямой в пространстве, намного трудозатратнее. А тут всё проще:
Пример 1
Выяснить взаимное расположение прямой, заданной точкой и направляющим вектором , и плоскости .
Решение: Вытащим вектор нормали плоскости: .
Вычислим скалярное произведение вектора нормали плоскости и направляющего вектора прямой: , значит, прямая либо параллельна плоскости, либо лежит в ней.
Подставим координаты точки в уравнение плоскости:
Получено верное равенство, следовательно, точка лежит в данной плоскости. Разумеется, и любая точка прямой тоже будет принадлежать плоскости.
ответ: прямая лежит в плоскости
Пример 2
Выяснить взаимное расположение плоскости и прямой .
Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.
После небольшой разминки мускулатуры начинаем накидывать блины на штангу:
Основные задачи на прямую и плоскость
Данная задача прям таки вертится в умах человечества, и встречается в практических задачах чаще всего. Когда я приступил к разработке пространственной геометрии, то, начиная с урока Уравнение плоскости, мне даже было немного неловко, что посетители сайта обманывались в своих ожиданиях. Многие задачи уже были, а вот этой ещё нет….
Рассмотрим прямую , которая пересекает плоскость . Требуется найти точку, в которой прямая пересекает плоскость: . Хотел разобрать задачу в общем виде, но передумал… лучше традиционный практический пример:
Пример 3
Дана прямая и плоскость . Требуется:
а) доказать, что прямая пересекает плоскость;
б) найти точку пересечения прямой и плоскости;
в) через прямую провести плоскость («омега»), перпендикулярную плоскости ;
г) найти проекцию прямой на плоскость ;
д) найти угол между прямой и плоскостью .
НеслАбо. А ведь всё началось с единственной точки пересечения =)
Решение: Сначала закрепим задачу о взаимном расположении прямой и плоскости:
а) Из уравнений прямой находим принадлежащую ей точку и направляющий вектор:
Вектор нормали плоскости, как всегда, сдаётся без боя:
Вычислим скалярное произведение:
, значит, прямая пересекает плоскость, что и требовалось доказать.
Как найти точку пересечения прямой и плоскости?
б) Найдём точку пересечения плоскости и прямой: . Не «Чёрный квадрат» Малевича, но тоже шедевр:
Как найти точку пересечения прямой и плоскости?
обозначим овощи первого склада за х, тогда на втором складе было 2,5х. составим уравнение:
х+180=2,5х+60
перенесем с иксом в одну часть, без икса - в другую.
180-60=2,5х-х
120=1,5х
х=80 тонн.
значит на первом складе было 89 тонн, тогда на втором складе было 80*2,5=200 тонн
ответ: 80 и 200 тонн
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
snady16.03.2023 23:06
-
galaktionov96415.06.2020 00:50
-
яяяяяяяяяяяяяя2222201.04.2023 03:08
-
marinamarinam917.03.2020 21:27
-
sofafomenkosofa02.03.2023 10:49
-
Радужныйединорог152613.04.2023 20:18
-
emil13209.01.2020 17:44
-
hhhhyd05.07.2020 22:09
-
mixa34226.03.2022 09:58
-
КсюшаЛор22.06.2023 01:53
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.