Объясните как свернулась в скобку Преобразуем подкоренное выражение: 240−8x−x^2=−(x^2+8x−240)=−((x+4)^2−16−240)
157
175
Ответы на вопрос:
Объяснение:
(х²+2*4х+4²) это формула , мы прибавили 4², теперь надо вычесть 16.
Понятно ?
X^4 + x^3 - 18x^2 + ax + b = 0 если корень уравнения рациональный x = m/n, то m - делитель свободного члена, n - делитель старшего коэффициента. если корень целый, то это просто делитель свободного члена b. в данном случае старший коэффициент равен 1, поэтому все рациональные корни будут целыми. рассмотрим два случая. 1) число b - простое. тогда возможные корни: 1; -1; b; -b. подставляем эти корни: x = 1: 1 + 1 - 18 + a + b = 0; a = 16 - b x = -1: 1 - 1 - 18 - a + b = 0; a = b - 18 x = b; b^4 + b^3 - 18b^2 + a*b + b = 0; a = -b^3 - b^2 + 18b - 1 чтобы найти а, мы разделили всё уравнение на b. дальше будет тоже самое. x = -b; b^4 - b^3 - 18b^2 - a*b + b = 0; a = b^3 - b^2 - 18b + 1 2) число b - составное, например, b = p*r. тогда, кроме корней 1, -1, b, -b будут еще корни p, -p, r, -r. x = p: p^4 + p^3 - 18p^2 + a*p + p*r = 0; a = -p^3 - p^2 + 18p - r x = -p; p^4 - p^3 - 18p^2 - a*p + p*r = 0; a = p^3 - p^2 - 18p + r x = r: r^4 + r^3 - 18r^2 + a*r + p*r = 0; a = -r^3 - r^2 + 18r - p x = -r: r^4 - r^3 - 18r^2 - a*r + p*r = 0; a = r^3 - r^2 - 18r + p если у составного числа b больше делителей, например, b = k*p*r*s, то будет тоже самое. например, при x = k*r будет: x = kr: (kr)^4 + (kr)^3 - 18(kr)^2 + a*kr + kr*ps = 0; a = -(kr)^3 - (kr)^2 + 18kr - ps
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
katy5444509.05.2020 11:52
-
GP711.01.2021 09:54
-
лулу3611.09.2022 23:00
-
Dasha55555907.09.2022 13:39
-
леньчайник27.11.2021 02:59
-
Babetta5127.09.2021 16:06
-
anastasijakokos14.11.2022 02:05
-
Куку156012.04.2023 13:07
-
hotnikita41217.02.2022 07:33
-
Denis22342303.04.2023 12:34
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.