Есть ответ 👍

Из данной точки к плоскости проведены перпендикуляр длиной 1 дм. и две равные наклонные. найдите длины наклонных, если угол между ними равен 60 градусов, а их проекции взаимно перпендикулярны.

167
477
Посмотреть ответы 2

Ответы на вопрос:


Все просто! /ad/=/bd/=> /ac/=/bc/ /ad/=/bd/,< adb=60 => треугольник abd - равносторонний => /ab/=/ac/доказательство: рассмотрим треугольники adc и acb. /ac/ - общая сторона /ad/=/ab/ => треугольники равны по катету и гипотенузе => /cd/=/bc/=10 треугольник acb - равнобедренный, /ac/=/cb/=10 по теореме пифагора /ac/^2+/bc/^2=/ab/^2 100+100=/ab/^2 /ab/=10 корней из 2 /ab/=/ad/=/bd/=10 корней из 2cделай ответ лучшим, я старалась!
maksdvinskih
4,6(14 оценок)

Все ребра треугольной призмы равны. найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√  3    полная площадь призмы равна сумме площадей двух оснований и     площади боковой поверхности.     пусть ребро призмы равно а.       грани - квадраты, их 3.       s бок=3а²     s двух  осн.=( 2 а²√3): 4= (  а²√3): 2    по условию     3а²+(а²√3) : 2=8+16√3     умножим   обе стороны уравнения на 2 и вынесем  а² за скобки:       а²(6+√3)=16+32√3)=16(1+2√3)         а²=16(1+2√3) : (6+√3)     подставим значение   а² в формулу площади правильного треугольника:       s=[16*(1+2√3) : (6+√3)]*√3: 4     s=4(√3+6) : (6+√3)= 4 (ед. площади)     думаю, решение понятно.  перенести решение на листок для вас не составит труда.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS