Есть ответ 👍

Дан прямой цилиндр с радиусом круга 3 и высотой 4. Найдите объем и площадь боковой поверхности вписанного в этот цилиндр прямого конуса (вершина конуса находится в центре одного из оснований цилиндра).
ответы разделите на π и округлите до сотых, при необходимости.
Объем конуса:

Площадь боковой поверхности:

100
151
Посмотреть ответы 2

Ответы на вопрос:

Mariya1985
4,8(25 оценок)

Дан прямой цилиндр с радиусом круга 3 и высотой 4.  Найдите V и

S( бок.поверхности) , вписанного в этот цилиндр прямого конуса (вершина конуса находится в центре одного из оснований цилиндра). ответы разделите на π и округлите до сотых, при необходимости.

Объяснение:

Если конус вписан в цилиндр , то основания совпадают, поэтому

r( конуса)=3.

Т.к. вершина конуса находится в центре верхнего основания цилиндра , то h( цилиндра)=h( конуса)=4.

V(конуса )=1/3*S(осн)*h ,  V(пирам)=1/3*(π*3²)*4=12π .

S(бок.конуса )=  π * r* L . Найдем L из прямоугольного треугольника по т. Пифагора L= √( 3³+4²)=√25=5.

S(бок.конуса )=π*3*5=15π.

ответ :  V(пирам)/π=12     ,    S(бок.конуса )/π=15.

vhbhvgh
4,4(19 оценок)

Тупым углом будет являться угол при вершине меньшего основания. проводим ещё одну высоту. она будет равна первой высоте, параллельна ей и отсекать вместе с ней на большем основании три отрезка, два из которых равны по 6 см (исходя из равенства треугольников, которые равны по катета и гипотенузе), а третий отрезок - центральный, будет равен меньшему основанию, т.к. является противоположной стороной прямоугольника. далее находим длину большего основания. оно равно 6см+15см= 21см. меньшее основание равно 21см-6см-6см = 9 см.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS