Точка О - центр вписанной в треугольник АВС окружности. Прямая ВО вторично пересекает описанную около этого треугольника окружность в точке Р. а) Докажите, что точка Р является центром окружности, описанной около треугольника АОС.
б) Найдите расстояние от точки Р до прямой АС, если радиус описанной около треугольника АВС окружности равен 14, угол АВС = 60
Ответы на вопрос:
Около треугольника ABC описана окружность. Прямая BO, где O – центр вписанной окружности, вторично пересекает описанную окружность в точке P.
a) Докажите, что AP=OP.
б) Найдите расстояние от точки P до прямой AC, если угол ABC
равен 120^{\circ}, а радиус описанной окружности равен 18.
а) Покажем равенство углов OAP, AOP треугольника AOP, что будет означать и равенство его сторон AP,OP.
Точка O, центр вписанной окружности в треугольник ABC, – точка пересечения биссектрис углов треугольника. Пусть \angle A=2\alpha,\angle B=2\beta.
\angle PAC=\angle CBP=\beta как вписанные углы, опирающиеся на дугу PC.
\angle AOP – внешний угол треугольника ABO, \angle AOP =\angle BAO+\angle ABO=\alpha +\beta.
Итак, \angle OAP=\angle AOP, откуда AP=OP. Что и требовалось доказать.
б) Заметим, \angle ACP=\beta (опирается на дугу AP как и вписанный угол ABP). То есть треугольник ACP – равнобедренный. Пусть Q – центр описанной окружности около треугольника ABC.
Поскольку центр описанной окружности около треугольника – точка пересечения серединных перпендикуляров к сторонам, то перпендикуляр, проведенный к AC из точки P пройдет через точку Q.
Поскольку \angle ABC=120^{\circ}, то \beta=60^{\circ}.
\angle APH=30^{\circ}, а поскольку треугольник AQP – равнобедренный, то \angle AQH=60^{\circ}.
В прямоугольном треугольнике AQH \angle HAQ=30^{\circ},AQ=18, значит, QH=9.
Наконец, PH=PQ+QH=18+9=27.
ответ: б) 27.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Геометрия
-
nicoguy227.02.2022 20:39
-
kariiiinaaaad12.07.2021 15:59
-
Lisaezhik10.12.2021 21:54
-
zohvav10.06.2020 02:53
-
8алина8212.12.2022 13:10
-
nastya0511213.02.2022 02:15
-
херфигзнает05.02.2020 20:51
-
adamadam07.10.2022 11:15
-
хасан0226.02.2023 22:26
-
denisprokopev20.02.2020 14:08
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.