lam3r
16.04.2023 10:53
Алгебра
Есть ответ 👍

−3,77m+9+5,3=(6+5,3)−3,97m.

293
467
Посмотреть ответы 3

Ответы на вопрос:

BlackL706
4,8(7 оценок)

- 3,77m+9+5,3=(6+5,3)-3,97

-3,77m+14,3=11,3-3,97m

10,53m неравняется 7,33

ответ:не является тождеством

Объяснение:

Просто раскрывает скобки и сравниваем

evelina2023
4,4(96 оценок)

−3,77m+9+5,3=(6+5,3)−3,97m

-3,77m + 14,3 = 11,3 - 3,97m

-3,77m + 3,97m = 11,3 - 14,3

0,2m = -3

m= -3:0,2

m = -15

nastia04102015
4,7(13 оценок)

f(x) = \dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1}

Совокупность всех первообразных функции f(x) называют неопределенным интегралом:

\displaystyle \int f(x) \, dx = F(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int f(x) \, dx = \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx

Теорема: если функции F и G являются соответственно первообразными функций f и g на промежутке I, то на этом промежутке функция y = F(x) \pm G(x) является первообразной функции y = f(x) \pm g(x):

\displaystyle \int \left(f(x) \pm g(x) \right) \, dx = \int f(x) \, dx \pm \int g(x) \, dx = F(x) \pm G(x) + C,

где C — произвольная постоянная.

Тогда \displaystyle \int \left(\dfrac{8}{(3 - 5x)^{4}} + \dfrac{3}{\cos^{2}2x} - e^{8x+1} \right) \, dx =

\displaystyle = \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, то на этом промежутке функция y = kF(x) является первообразной функции y = kf(x):

\displaystyle \int kf(x) \, dx = k \int f(x) \, dx = kF(x) + C

Тогда \displaystyle \int \dfrac{8}{(3 - 5x)^{4}} dx + \int \dfrac{3}{\cos^{2}2x} dx - \int e^{8x+1} dx =

= \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx

Теорема: если функция F является первообразной для функции f на промежутке I, а k — некоторое число, отличное от нуля, то на соответствующем промежутке функция y = \dfrac{1}{k} F(kx + b) является первообразной функции y = f(kx + b):

\displaystyle \int f(kx + b) \, dx = \dfrac{1}{k} F(kx + b) + C,

где C — произвольная постоянная.

Найдем каждый интеграл по отдельности:

1) \ \displaystyle \int \dfrac{dx}{(3 - 5x)^{4}} = \int (3 - 5x)^{-4} \, dx = \dfrac{1}{-5} \cdot \dfrac{(3 - 5x)^{-4 + 1}}{-4 + 1} + C =

= \dfrac{1}{15(3 - 5x)^{3}} + C

2) \ \displaystyle \int \dfrac{dx}{\cos^{2}2x} = \dfrac{1}{2} \, \text{tg} \, 2x + C

3) \ \displaystyle \int e^{8x+1} dx = \dfrac{1}{8} e^{8x + 1} + C

Получаем: \displaystyle 8 \int \dfrac{dx}{(3 - 5x)^{4}} + 3\int \dfrac{dx}{\cos^{2}2x} - \int e^{8x+1} dx =

= \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Таким образом, общий вид первообразных для функции f(x) имеет вид:

\dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

ответ: \dfrac{8}{15(3 - 5x)^{3}} + \dfrac{3}{2} \, \text{tg}\, 2x - \dfrac{1}{8} e^{8x + 1} + C

Использованные формулы интегрирования:

\displaystyle \int x^{a} \, dx = \dfrac{x^{a+1}}{a+1} + C, \ a \neq -1

\displaystyle \int \dfrac{dx}{\cos^{2}x} = \text{tg} \, x + C

\displaystyle \int e^{x} \, dx = e^{x} + C

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS