Есть ответ 👍

класс! 1) [tex]y= 1:\sqrt{2x-6}
Тут одз или что-то такое!

140
172
Посмотреть ответы 2

Ответы на вопрос:

F92120554651
4,7(69 оценок)

y=\dfrac{1}{\sqrt{2x-6}}\ \ ,\ \ \ ODZ:\ 2x-60\ ,\ x3\\\\\\x\in D(y)=(\, 3\, ;+\infty \, )

Функция всюду на ОДЗ принимает положительные значения:  y>0 .

Точек пересечения с осями координат не имет .

Асимптоты:  х=3  и  у=0 .

На ОДЗ функция всюду убывает .

Точек экстремума и перегиба нет.

График на рисунке .


класс! 1) [tex]y= 1:\sqrt{2x-6} Тут одз или что-то такое!
rufdiana
4,5(56 оценок)

ответ:

r 2+ 5-

2 x

−1 r

y2 =a

−5 r

рис. 5:

при a = −1 и a = −5 графики имеют 2 общие точки, при

остальных значениях a одну общую точку.

ответ: a ∈ (−5; −1).

1.12. (егэ) найдите число корней уравнения

6x2 + 2x3 − 18x + n = 0 в зависимости от параметра n.

решение.

перепишем уравнение в виде

y 6

2x3 + 6x2 − 18x = −n. r 54 y1

аналогично 1.11 построим на

одном чертеже графики функций

y2 = −n и схематичный график y2 =−n

y1 = 2x3 +6x2 −18x для этого найдем

производную: y1 = 6x2 +12x−18 и 0 1 -

критические точки x1 = −3 и x2 = 1. −3 −10 r x

исследуя знаки производной, нетруд-

но убедиться, что x1 = −3 точка

максимума, а x2 = 1 точка ми-

нимума, причем ymax (−3) = 54; рис. 6:

ymin (1) = −10. функция y1 возрастает на интервалах (−∞; −3)

и (1; +∞) и убывает на интервале (−3; 1).

из рис. 6 видно, что исходное уравнение имеет три корня при

−10 < −n < 54 или −54 < n < 10; два корня при n = −54 и

n = 10; один корень при n < −54 и n > 10.

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS