Сколько существует натуральных чисел, не превышающих 1000,которые делятся либо на 2, либо на 3, но не делятся на 6
Ответы на вопрос:
266
Пошаговое объяснение:
Сначала посчитаем, сколько чисел делится только на 2, 3, 5:
2: 1000 / 2 = 500 (множество A);
3: [1000 / 3] = 333 (B);
5: 1000 / 5 = 200 (C);
Теперь найдем пересечения этих множеств:
A ∩ B (те числа, которые делятся и на 2 и на 3, то есть на 6) = 1000 / 6 = 166;
A ∩ C (на 2 и на 5, то есть на 10) = [1000 / 10] = 100;
B ∩ C (на 3 и на 5, то есть на 15) = [1000 / 15] = 66;
A ∩ B ∩ C = (и на 2, и на 3, и на 5, то есть на 30) = [1000 / 30] = 33;
Теперь, по формуле включений-исключений найдем:
A ∪ B ∪ C = | A | + | B | + | C | - | A ∩ B | - | B ∩ C | - | A ∩ C | + | A ∩ B ∩ C | = 500 + 333 + 200 - 166 - 100 - 66 + 33 = 734 (те числа, которые делятся либо на 2, либо на 3, либо на 5)
Теперь найдем те, которые ни на одного не делятся:
1000 - 734 = 266
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
chiginavera12.12.2021 16:30
-
VF8509.09.2022 16:20
-
Алеся111111527.04.2023 13:44
-
hgfdui30.04.2021 14:05
-
Kuznezovamargo08.02.2020 05:29
-
Huran15.10.2022 13:23
-
Lena16312116.03.2022 09:30
-
makao116.10.2021 22:16
-
stylestudionmovp55715.08.2021 09:46
-
Sofochka130921.12.2021 12:41
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.