Ответы на вопрос:
Запишем матрицу в виде:
1 2 -2
-2 -1 1
1 -2 1
Главный определитель
∆=1*((-1)*1 - (-2)*1) - (-2)*(2*1 - (-2)*(-2)) + 1*(2*1 - (-1)*(-2)) = -3
Определитель отличен от нуля, следовательно, матрица является невырожденной и для нее можно найти обратную матрицу A-1.
Обратная матрица будет иметь следующий вид:
A11 A21 A31
A12 A22 A32
A13 A23 A33
где Aij - алгебраические дополнения.
Транспонированная матрица.
AT=
1 -2 1
2 -1 -2
-2 1 1
Найдем алгебраические дополнения матрицы AT.
A1,1 = (-1)1+1
-1 -2
1 1
∆1,1 = ((-1)*1 - 1*(-2)) = 1
A1,2 = (-1)1+2
2 -2
-2 1
∆1,2 = -(2*1 - (-2)*(-2)) = 2
A1,3 = (-1)1+3
2 -1
-2 1
∆1,3 = (2*1 - (-2)*(-1)) = 0
A2,1 = (-1)2+1
-2 1
1 1
∆2,1 = -((-2)*1 - 1*1) = 3
A2,2 = (-1)2+2
1 1
-2 1
∆2,2 = (1*1 - (-2)*1) = 3
A2,3 = (-1)2+3
1 -2
-2 1
∆2,3 = -(1*1 - (-2)*(-2)) = 3
A3,1 = (-1)3+1
-2 1
-1 -2
∆3,1 = ((-2)*(-2) - (-1)*1) = 5
A3,2 = (-1)3+2
1 1
2 -2
∆3,2 = -(1*(-2) - 2*1) = 4
A3,3 = (-1)3+3
1 -2
2 -1
∆3,3 = (1*(-1) - 2*(-2)) = 3
Обратная матрица:
1 2 0
=1/-3 3 3 3
5 4 3
A-1=
-1/3 -2/3 0
-1 -1 -1
-5/3 -4/3 -1.
Проверим правильность нахождения обратной матрицы путем умножения исходной матрицы на обратную. Должны получить единичную матрицу E.
E=A*A-1=
1 2 -2
-2 -1 1
1 -2 1
1 2 0
1/-3 3 3 3
5 4 3
E=A*A-1=
1*1+2*3+(-2)*5 1*2+2*3+(-2)*4 1*0+2*3+(-2)*3
(-2)*1+(-1)*3+1*5 (-2)*2+(-1)*3+1*4 (-2)*0+(-1)*3+1*3
1*1+(-2)*3+1*5 1*2+(-2)*3+1*4 1*0+(-2)*3+1*3 =
-3 0 0
= 1/-3 0 -3 0
0 0 -3
A*A-1=
1 0 0
0 1 0
0 0 1.
Решение верно.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
gjkbyf2006197418.02.2021 14:50
-
джания01.01.2020 22:32
-
витка904.07.2020 22:53
-
yyyoooppp24.02.2020 01:31
-
marta12t09.08.2022 05:39
-
aydanxudieva1416.06.2022 09:48
-
MeilisS12.05.2022 02:28
-
yourmumsboyfriend04.01.2021 21:57
-
st1nk1n1p22.07.2020 17:27
-
Ашеашачочєо19.04.2022 00:17
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.