Есть ответ 👍

3) Жай бөлшектерді қосу, азайту, көбейту және бөлу амалдары қалай
орындалады?​

103
239
Посмотреть ответы 1

Ответы на вопрос:

evtpasha2017
4,6(33 оценок)

1  определение общего множителя многочлена требуется при громоздких выражений, а также при решении уравнений высших степеней. этот метод имеет смысл, если степень многочлена не ниже второй. при этом общим множителем может быть не только двучлен первой степени, но и более высоких степеней. 2  чтобы найти общий множитель слагаемых многочлена, необходимо выполнить ряд преобразований. простейший двучлен или одночлен, который можно вынести за скобки, будет одним из корней многочлена. очевидно, что в случае, когда многочлен не имеет свободного члена, будет неизвестное в первой степени – корень многочлена, равный 0. 3 более сложным для поиска общего множителя является случай, когда свободный член не равен нулю. тогда применимы способы простого подбора или группировки. например, пусть все корни многочлена рациональные, при этом все коэффициенты многочлена – целые числа: y^4 + 3·y³ – y² – 9·y – 18. 4выпишите все целочисленные делители свободного члена. если у многочлена есть рациональные корни, то они находятся среди них. в результате подбора получаются корни 2 и -3. значит, общими множителями этого многочлена будут двучлены (y - 2) и (y + 3). 5очевидно, что степень оставшегося многочлена при этом понизится с четвертой до второй. чтобы получить его, проведите деление исходного многочлена последовательно на (y - 2) и (y + 3). выполняется это подобно делению чисел, в столбик. 6метод вынесения общего множителя является одним из составляющих разложения на множители. описанный выше способ применим, если коэффициент при старшей степени равен 1. если это не так, то сначала необходимо выполнить ряд преобразований. например: 2y³ + 19·y² + 41·y + 15. 7выполните замену вида t = 2³·y³. для этого умножьте все коэффициенты многочлена на 4: 2³·y³ + 19·2²·y² + 82·2·y + 60. после замены: t³ + 19·t² + 82·t + 60. теперь для поиска общего множителя применим вышеописанный способ. 8кроме того, эффективным методом поиска общего множителя является группировка элементов многочлена. особенно он полезен, когда первый способ не работает, т.е. у многочлена нет рациональных корней. однако реализация группировки не всегда бывает очевидной. например: у многочлена y^4 + 4·y³ – y² – 8·y – 2 нет целых корней. 9воспользуйтесь группировкой: y^4 + 4·y³ – y² – 8·y – 2 = y^4 + 4·y³ – 2·y² + y² – 8·y – 2 = (y^4 – 2·y²) + (4·y³ – 8·y) + y² – 2 = (y² - 2)*(y² + 4·y + 1).общий множитель элементов этого многочлена (y² - 2).

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS