Ответы на вопрос:
Пусть сумма ряда :
Предположим, что число - целое число и
Найдем среди чисел от 1 до m наибольшую степень двойки, то есть такую, что : , где - натуральное число.
Умножим обе части равенства на :
Поскольку число имеет максимальную степень двойки для чисел от 1 по m, то все степени двоек входящие в разложение на простые множители чисел от 1 по m, если таковые существуют, сократятся c числителем
- натуральное нечетное число.
Приведем все дроби к наименьшему общему знаменателю, но поскольку, наименьший общий знаменатель нечетных чисел число нечетное, а все числители четные, то левая часть равенства будет выглядить так : , где - четное число, - нечетное число.
Целое число: является нечетным при .
Тогда : произведение двух нечетных числе число нечетное, но число - четное .
То есть мы пришли к противоречию, а значит число - нецелое.
Если же , то - целое число.
Примечание: данное доказательство работает не только для данного ряда, но и для любого упорядоченного ряда вида :
, если в этом ряду существует число вида ,где - простое, не делится на , причем в разложении на простые множители каждого из чисел от до содержится не более чем - я cтепень числа , за исключением самого числа . То есть умножаем обе части на и также рассуждаем про делимость на .
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
annajortsorensen09.08.2020 04:20
-
mirgin200230.04.2021 09:42
-
bogdanlesja119.05.2022 22:12
-
Spektrum131.05.2022 19:43
-
kirmakcim55316.03.2022 11:28
-
OsamuDazai25.09.2021 00:48
-
Victoria123645627.12.2022 22:08
-
milakaty02.06.2023 05:43
-
Алексей00099926.01.2020 07:47
-
BlackPupils15.08.2021 09:39
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.