Есть ответ 👍

Профильная математика 15 задание

103
190
Посмотреть ответы 3

Ответы на вопрос:

fykdshklf
4,6(12 оценок)

log(1 + 1/(x + 1)²) (x² + 3x + 2)/(x² - 3x + 4) ≤ 0

одз

1 + 1/(x + 1)² > 0  x ∈ R

1 + 1/(x + 1)² ≠ 1  x ∈ R

(x + 1) ≠ 0 x ≠ -1

(x² + 3x + 2)/(x² - 3x + 4) > 0

x² + 3x + 2 = 0   D = 9 - 8 = 1  x12 = (-3 +- 1)/2 = -2   -1  

x² - 3x + 4 = 0   D = 9 - 16 < 0   x∈ R

(x + 1)(x + 2) > 0

x∈ (-∞, -2) U (-1, +∞)

log(1 + 1/(x + 1)²) (x² + 3x + 2)/(x² - 3x + 4) ≤ log(1 + 1/(x + 1)²) 1

1 + 1/(x + 1)² > 1 всегда

(x² + 3x + 2)/(x² - 3x + 4) ≤ 1

(x² + 3x + 2)/(x² - 3x + 4)  - 1 ≤ 0

(x² + 3x + 2 - (x² - 3x + 4)) ≤ 0

знаменатель отбрасываем (x² - 3x + 4) он всегда >0

(x² + 3x + 2 - x² + 3x - 4) ≤ 0

6x - 2 ≤ 0

x ≤ 1/3

x∈ (-∞, -2) U (-1, 1/3]

leetine7
4,7(16 оценок)

Решите неравенство  Log_(1 +1/(x+1)²)  ( x²+3x +2)/(x²-3x+4) ≤ 0

ответ:   x ∈ ( -∞ ; -2) ∪ (-1 ; 1/3] .

Пошаговое объяснение:   x²-3x+4 =(x -3/2)² +7/4  > 0    || ≥7/4 ||

ОДЗ:  { x²+3x +2  > 0 ; x+1 ≠0 . ⇔{ (x +2)(x+1)  > 0 ; x ≠ - 1. ⇒

x ∈ ( - ∞ ; -2) ∪ (-1  ; ∞) .

1 +1/(x+1)² > 1  ;  

Log_(1 +1/(x+1)²)  ( x²+3x +2)/(x²-3x+4) ≤ 0 ⇔  0 < ( x²+3x +2)/(x²-3x+4) ≤ 1 ⇔

0 < x²+3x +2  ≤ x²-3x+4 ⇔0 ⇔  { x²+3x +2>0 ; x²+3x +2  ≤ x²-3x+4.⇔

{ (x+2)(x+1)>0 ;  x²+3x +2  ≤ x²-3x+4.⇔ { (x+2)(x+1)>0 ;  x  ≤ 1/3.         ⇒

x ∈ ( -∞ ; -2) ∪ (-1 ; 1/3] .

вика3662
4,7(94 оценок)

R> 161 y> 29 n< 56 a> 138 на координатном луче просто

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS