1. Докажите, что число 17+1717+171717 делится на 17. 2. Числа n и m целые. Докажите, что число m*n*(m+n) четное.
3. Известно, что a и b целые числа и 7a+5b=111 a b. Может ли число a+b быть четным?
Хоть что-то
Ответы на вопрос:
1. Доказывать, в принципе, и нечего. Каждое из слагаемых суммы 17 + 1717 + 171717 делится на 17 (легко проверить, что 1717 : 17 = 101, 171717 : 17 = 10101), а значит и все сумма делится на 17.
2. Рассмотрим все возможные случаи.
1) если каждое из чисел n и m четное, то утверждение, очевидно, верно (можно легко проверить: если n = 2k, m = 2l, то mn(m+n) = 2k · 2l · 2(k + l) - очевидно, четное, т.к. имеется множитель-двойка).
2) если одно из чисел n и m - четное, а другое - нечетное, то утверждение вновь верно в силу того же, что и в первом случае. (допустим, n = 2k, m = 2l + 1. Итого mn(m+n) = 2k(2l + 1)(2k + 2l + 1). Сразу виден множитель-двойка, из чего следует, что произведение на 2 делится.
3) если каждое из чисел является нечетным (n = 2k + 1, m = 2l + 1), то имеем: mn(m+n) = (2k + 1)(2l + 1)(2k + 1 + 2l + 1) = (2k + 1)(2l + 1) · 2(k + l + 1). И опять есть двойка. Делаем вывод, что и в этом случае произведение делится на 2.
Утверждение доказано.
3. 7a + 5b = 111ab.
Если подберем такую пару (a, b), что сумма (a + b) будет четной, то ответ будет положительным.
Пара (0, 0) железно удовлетворяет всем условиям: 0 + 0 = 0, сумма (a + b) = 0 + 0 = 0 - четная, т.к. 0 - четное число.
ОТВЕТ: да, может
Многоборье
Толкание ядра
Метания копья
Тройной прыжок
Толкание (метание) диска
Бег
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Математика
-
cocscocsovich311.08.2022 20:11
-
dashbrazhik26.04.2021 02:33
-
PolliKirill06.07.2021 19:16
-
vovadj1716.03.2023 08:40
-
Варька11111111106.04.2021 21:34
-
LastGirlOnEarth13.09.2020 11:15
-
Dyrochka2225.02.2023 13:22
-
aa1055000p0c7vs11.05.2023 01:03
-
zhan120516.09.2022 09:38
-
ЭмиРоуз511.01.2023 23:10
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.