Есть ответ 👍

Найти наибольшее значение функции : u=x^{2}y^{3}z(14-2x-3y-z) В области x,y,z >0

227
479
Посмотреть ответы 2

Ответы на вопрос:

kris411
4,4(22 оценок)

ответ: 128 , при x=y=z=2

Объяснение:

u=z*x^2*y^3*(14-2x-3y-z) , где x,y,z>0

Очевидно, раз нам нужно наибольшее значение, то нам есть смысл рассматривать только те значения, при которых 14-2x-3y-z>=0

0<2x+3y+z<=14

В рассматриваемой области из неравенства Коши-Буняковского имеем :

z*x^2*y^3 = z*x*x*y*y*y<= ( (2x+3y+z)/6)^6

Откуда:

u<=6^(-6) * ( (2x+3y+z))^6 *(14-(2x+3y+z) )

Пусть : 2x+3y+z=t

0<t<=14

Найдем максимум функции:

f(t) = t^6 *(14-t) =14t^6 -t^7

Найдем нули производной:

f'(t) = 84t^5-7*t^6 = 0

t1=0

84-7t=0

t2=84/7 = 12 - точка максимума.

f(14)=f(0)=0

f(12) = 2*12^6 - максимальное значение на 0<t<=14

Таким образом:

u<=6^(-6) * ( (2x+3y+z))^6 *(14-(2x+3y+z) ) <= 6^(-6) *2*12^6 = 2^7 = 128.   Иначе говоря,  umax = 128

Данное значение будет получено, когда:

x=y=z  ( требование выполнения равенства в неравенстве Коши-Буняковского), и когда 2x+3y+z = 12 или 6x=12 → x=y=z=2

bengamin1993
4,5(27 оценок)

Объяснение:

\frac{ {a}^{3} - {a}^{5} }{ {a}^{3} - a } = \frac{ - {a}^{3}(a {}^{2} - 1) }{a(a {}^{2} - 1)} = - a {}^{2}

1) Вынести из числителя общий множитель -а³

2) Вынести из знаменателя общий множитель а

3) сократить а²-1

4) поделить -а³ на а = -а^(3-1)=-а²

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS