Есть ответ 👍

Количество двузначных чисел, сумма цифр которых не менее произведения этих цифр, равно? (расписать решение и объяснить)

198
317
Посмотреть ответы 2

Ответы на вопрос:

shamilsaidov2
4,8(29 оценок)

27 чисел

Пошаговое объяснение:

Пусть x, y — цифры двузначного числа (1 ≤ x ≤ 9, 0 ≤ y ≤ 9). Тогда

x+y\geq xy\\x-xy+y-1\geq -1\\x(1-y)-(1-y)\geq -1\\(x-1)(1-y)\geq -1\\(x-1)(y-1)\leq 1

Первый множитель не меньше нуля, а второй не меньше -1.

Если y = 0, то произведение заведомо отрицательно, и все x подходят (+9 вариантов);

Если y = 1, то произведение равно нулю, все x подходят (+9 вариантов);

Если y = 2, то (x-1)(2-1)\leq 1\Leftrightarrow x\leq 2 (+2 варианта);

Если y ≥ 3, то (x-1)(y-1)\leq 8(x-1)\leq 1. При x ≥ 2 произведение больше единицы, поэтому для каждого y подходит ровно один x = 1 (+7 вариантов).

Итого 27 чисел.


4

Это точно лайк

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Математика

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS