FACE091
22.01.2022 00:13
Геометрия
Есть ответ 👍

а биссектрисе угла ABC, равном 44∘, выбраны точки M и N. Точки P и Q — проекции M и N на лучи BC и BA соответственно. X — середина отрезка MN. Известно, что ∠PXB=17∘. Чему равен угол BQX? 7 класс

106
365
Посмотреть ответы 2

Ответы на вопрос:

belogrud98
4,5(58 оценок)

Объяснение hi here's the solution to the problem


а биссектрисе угла ABC, равном 44∘, выбраны точки M и N. Точки P и Q — проекции M и N на лучи BC и B
Lev1111111111
4,5(58 оценок)

Объяснение:

Доказательство: Пусть даны две прямые a и b. Предположим, что они имеют более одной общей точки - точки M и N. Тогда через две точки M и N проходила бы не одна, а две прямые - прямые a и b. Но это противоречит аксиоме. Конец доказательства.

Что мне не нравится в доказательстве: Хорошо, мы доказали, что две разные прямые не могут иметь две общие точки. Но для меня ситуация выглядит так, что мы доказали только этот частный случай. А если мы возьмем три общие точки или больше? Не похоже, чтобы аксиома запрещяла, чтобы две разные прямые имели три общие точки.

Умом-то я понимаю, что если две прямые имеют более одной общей точки, то они являются одной и той же прямой. Но вот строго доказать, увы, не могу. И мне кажется, что для этого хватит все той же аксиомы. А вся моя проблема проистекает из-за неверного понимания самой аксиомы, которая скорее всего запрещяет и случаи с большим количеством общих точек.

МОЛОДЦЫ ДЕРЖИТЕСЬ УДАЧИ ВАМ -^-)

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Геометрия

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS