Сколько натуральных (с единицы) чисел n среди первых 5000 таковы, что (n - 1)! делится на n? Я знаю, что из 4330, но как это доказать математически
Ответы на вопрос:
Объяснение:
Если n - простое число, то (n-1)! на делится на n, так как все его простые множители, очевидно, меньше n.
Если n можно представить в виде произведения двух различных чисел, то эти числа точно не больше чем n-1 и, следовательно, будут участвовать в произведении, и (n-1)! будет делиться на n.
Если же составное число n нельзя представить в виде произведения двух различных чисел, то n - квадрат простого числа p. Тогда в произведении (n-1)! будет p-1 чисел, кратных p, и, если p больше двух, (n-1)! будет делиться на p^(p-1), то есть и на p²=n.
Простых чисел до 5000 всего 669 (проверял программой, не знаю где найти это число), из составных исключением является n=2² => 3!=6 не делится на 4. Также 0!=1 делится на 1. Из 5000 чисел не подходят 670, значит остальные 4330 подходят.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Алгебра
-
UlyaYouth11128.11.2021 18:59
-
romka199811p0bu1825.05.2022 16:35
-
252500817.01.2020 13:18
-
Jions04.04.2022 04:30
-
myagkikhigorek22.01.2023 00:49
-
kongratbaeva200309.04.2022 04:20
-
stepatimoshkov8Dimas19.11.2021 05:21
-
Элаизааа14.10.2022 00:26
-
Анастасія200718.05.2022 15:13
-
olyacolesnik2020.05.2020 17:01
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.