def04565
13.05.2022 23:34
Алгебра
Есть ответ 👍

Доказать тригонометрическое тождество

259
380
Посмотреть ответы 2

Ответы на вопрос:

almiradanil
4,6(70 оценок)

1)\ \ 2(sin^6a+cos^2a)+1=2((sin^2a)^3+cos^2a)^3)+\underbrace {(sin^2a+cos^2a)^2}_{1^2=1}=\\\\\\=2(\underbrace {sin^2a+cos^2a}_{1})(sin^4a-sin^2a\cdot cos^2a+cos^4a)+\\\\+(sin^4a+2sin^2a\cdot cos^2a+cos^4a)=\\\\\\=2sin^4a-2sin^2a\cdot cos^2a+2cos^4a+sin^4a+2sin^2a\cdot cos^2a+cos^4a=\\\\\\=3sin^4a+3cos^4a=3\, (sin^4a+cos^4a)

2)\ \ ctg^4a-cos^2a=\dfrac{cos^2a}{sin^2a}-cos^2a=\dfrac{cos^2a-cos^2a\cdot sin^2a}{sin^2a}=\\\\\\=\dfrac{cos^2a\, (1-sin^2a)}{sin^2a}=\dfrac{cos^2a\cdot cos^2a}{sin^2a}=\dfrac{cos^2a}{sin^2a}\cdot cos^2a=ctg^2a\cdot cos^2a

3)\ \ \dfrac{2cos^2a-1}{1-2\, sina\cdot cosa}-\dfrac{cosa-sina}{cosa+sina}=\\\\\\=\dfrac{2cos^2a-(sin^2a+cos^2a)}{sin^2a+cos^2a-2\, sina\cdot cosa}-\dfrac{cosa-sina}{cosa+sina}=\\\\\\=\dfrac{cos^2a-sin^2a}{(sina-cosa)^2}-\dfrac{cosa-sina}{cosa+sina}=\dfrac{(cosa-sina)(cosa+sina)}{(cosa-sina)^2}-\dfrac{cosa-sina}{cosa+sina}=\\\\\\=\dfrac{cosa+sina}{cosa-sina}-\dfrac{cosa-sina}{cosa+sina}=\dfrac{(cosa+sina)^2-(cosa-sina)^2}{(cosa-sina)(cosa+sina)}=

=\dfrac{cos^2a+2sina\cdot cosa+sin^2a-cos^2a+2sina\cdot cosa-cos^2a}{cos^2a-sin^a}=\\\\\\=\dfrac{4sina\cdot cosa}{cos^2a-sin^2a}=\Big[\ \dfrac{:cos^2a}{:cos^2a}\ \Big]=\dfrac{4\cdot \frac{sina}{cosa}}{1-\frac{sin^2a}{cos^2a}}=\dfrac{4tga}{1-tg^2a}

Ivan700076
4,8(71 оценок)

X² -x-2  > 0 парабола, ветви направлены вверх х²-х-2=0 д=1+4*2=9 х₁= 1-3 = -1         2 х₂= 1+3 =2         2       +                             + -1 2   \\\\\\\\\\             -               \\\\\\\\\ х∈(-∞; -1)∨(2; +∞)

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Алгебра

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS